The diverse functional repertoire of proteins promises to yield new materials with unprecedented capabilities, so long as versatile chemical methods are available to introduce synthetic components at specific sites on biomolecule surfaces. As a demonstration of this potential, we have used site-selective strategies to attach antifreeze proteins found in Arctic fish and insects to polymer chains. This multivalent arrangement increases the thermal hysteresis activity of the proteins and leads to materials that can be cast into thin films. The polymer-protein conjugates retain the ability of the proteins to slow ice growth in subzero water and can inhibit ice formation after attachment to glass surfaces. These inexpensive materials may prove useful as coatings for device components that must function at low temperature without ice buildup. The polymer attachment also allows higher thermal hysteresis values to be achieved while using less protein, thus lowering the cost of these additives for biomedical applications.
Herein, we describe an organocatalytic living polymerization approach to network and subsequent hydrogel formation. Cyclic carbonate-functionalized macromolecules were ring-opened using an alcoholic initiator in the presence of an organic catalyst, amidine 1,8-diazabicyclo[5.4.0]undec-7-ene. A model reaction for the cross-linking identified monomer concentration-dependent reaction regimes, and enhanced kinetic control was demonstrated by introducing a co-monomer, trimethylene carbonate. The addition of the co-monomer facilitated near-quantitative conversion of monomer to polymer (>96%). Resulting poly(ethylene glycol) networks swell significantly in water, and an open co-continuous (water-gel) porous structure was observed by scanning electron microscopy. The organocatalytic ring-opening polymerization of cyclic carbonate functional macromonomers using alcoholic initiators provides a simple, efficient, and versatile approach to hydrogel networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.