The prevalence of aflatoxin and fumonisin was investigated in maize intended for immediate human consumption in eastern Kenya at a time in 2010 when an aflatoxin outbreak was recognized. Samples were collected from people who brought their maize for processing at local commercial mills. Sites were selected using a geographical information system overlay of agroecological zones and Kenya's administrative districts. Interviews and collection of maize flour samples was conducted from 1,500 people who processed maize at 143 mills in 10 administrative districts. Mycotoxins were analyzed using enzyme-linked immunosorbent assays for aflatoxin and fumonisin, leading to detection at levels above the respective maximum tolerable limits in 39 and 37% of the samples, respectively. Samples with aflatoxin contamination above the legal limit ranged between 22 and 60% across the districts. A higher occurrence of aflatoxin was associated with smaller maize farms, lower grain yield, and monocropping systems, while a larger magnitude of the toxin was observed in the subhumid agroecological zone, in samples with more broken kernels, and, curiously, less maize ear damage at harvest. Analysis of paired grain samples (visually sorted and unsorted) showed that sorting reduced fumonisin by 65%, from above to below the legal limit of 1,000 ppb. Sorting did not, however, reduce aflatoxin levels. Although the aflatoxin problem is widely acknowledged, the high prevalence of fumonisin has not previously been reported. There is need for surveillance of the two mycotoxins and establishment of intervention strategies to reach vulnerable small-scale farmers.
MC acceptance in a population of novice users, many with limited experience with tampons, indicates that there is a pool of potential users in low-resource settings.
We conducted a survey of aflatoxin and fumonisin in maize in western Kenya. In a regional survey of aflatoxin conducted in 2009 across three agroecological zones within three administrative regions, milled maize samples were collected from 985 patrons of 26 hammer mills. Aflatoxin contamination was detected in 49% of samples and was above the regulatory (10 ppb) in 15% of the samples overall; 65% of samples from a drought-prone area were over the limit. In a detailed survey in Bungoma County, we investigated aflatoxin and fumonisin contamination in four popular maize varieties at harvest and after 2 and 4 months of storage. We collected whole-grain samples from farmers' storage sheds and milled samples from patrons of local mills. Mean aflatoxin contamination was identical for storage sheds and mills at 2.3 ppb. In all, 41% of the samples from mills had detectable aflatoxin, with 4% over the regulatory limit, whereas 87% had detectable fumonisin, with 50% over the regulatory limit (1 ppm). Mean contamination levels did not change during storage. Maize varieties differed in fumonisin contamination, with the most popular varieties vulnerable to both mycotoxins and weevils, which are potential factors in exacerbating mycotoxin contamination. Mycotoxin surveillance is important not just in areas known previously for aflatoxin contamination and acute poisoning but also is needed in all maize-producing regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.