Forensic DNA phenotyping is gaining interest as the number of applications increases within the forensic genetics community. The possibility of providing investigative leads in addition to conventional DNA profiling for human identification provides new insights into otherwise "cold" police investigations. The ability of reporting on the bio-geographical ancestry (BGA), appearance characteristics and age based on DNA obtained from a crime scene sample of an unknown donor makes the exploration of such markers and the development of new methods meaningful for criminal investigations. The VISible Attributes through GEnomics (VISAGE) Consortium aims to disseminate and broaden the use of predictive markers and develop fully optimized and validated prototypes for forensic casework implementation. Here, the first VISAGE appearance and ancestry tool development, performance and validation is reported. A total of 153 SNPs (96.84 % assay conversion rate) were successfully incorporated into a single multiplex reaction using the AmpliSeq™ design pipeline, and applied for massively parallel sequencing with the Ion S5 platform. A collaborative effort involving six VISAGE laboratory partners was devised to perform all validation tests. An extensive validation plan was carefully organized to explore the assay's overall performance with optimum and low-input samples, as well as with challenging and casework mock samples. In addition, forensic validation studies such as concordance and mixture tests recurring to the Coriell sample set with known genotypes were performed. Finally, inhibitor tolerance and specificity were also evaluated. Results showed a robust, highly sensitive assay with good overall concordance between laboratories. genetics community to start the development of tools to infer information about the donor of biological traces found at the crime-scene to be used in police investigations to help find unknown perpetrators of crime. These investigative DNA analyses have been termed Forensic DNA Phenotyping (FDP), which includes three components: the inference of bio-geographical ancestry (BGA), the prediction of externally visible characteristics (EVC), and the estimation of chronological age.
DNA methylation analysis is becoming increasingly useful in biomedical research and forensic practice. The discovery of differentially methylated sites (DMSs) that continuously change over an individual's lifetime has led to breakthroughs in molecular age estimation. Although semen samples are often used in forensic DNA analysis, previous epigenetic age prediction studies mainly focused on somatic cell types. Here, Infinium MethylationEPIC BeadChip arrays were applied to semen-derived DNA samples, which identified numerous novel DMSs moderately correlated with age. Validation of the ten most age-correlated novel DMSs and three previously known sites in an independent set of semen-derived DNA samples using targeted bisulfite massively parallel sequencing, confirmed age-correlation for nine new and three previously known markers. Prediction modelling revealed the best model for semen, based on 6 CpGs from newly identified genes SH2B2, EXOC3, IFITM2, and GALR2 as well as the previously known FOLH1B gene, which predict age with a mean absolute error of 5.1 years in an independent test set. Further increases in the accuracy of age prediction from semen DNA will require technological progress to allow sensitive, simultaneous analysis of a much larger number of age correlated DMSs from the compromised DNA typical of forensic semen stains.
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.