Pine (Pinus) species exhibit extensive variation in needle shape and size between juvenile (primary) and adult (secondary) needles (heteroblasty), but few studies have quantified the changes in needle morphological, anatomical and chemical traits upon juvenile-to-adult transition. Mediterranean pines keep juvenile needles longer than most other pines, implying that juvenile needles play a particularly significant role in seedling and sapling establishment in this environment. We studied needle anatomical, morphological and chemical characteristics in juvenile and different-aged adult needles in Mediterranean pines Pinus halepensis Mill., Pinus pinea L. and Pinus nigra J. F. Arnold subsp. salzmannii (Dunal) Franco hypothesizing that needle anatomical modifications upon juvenile-to-adult transition lead to a trade-off between investments in support and photosynthetic tissues, and that analogous changes occur with needle aging albeit to a lower degree. Compared with adult needles, juvenile needles of all species were narrower with 1.6- to 2.4-fold lower leaf dry mass per unit area, and had ~1.4-fold thinner cell walls, but needle nitrogen content per dry mass was similar among plant ages. Juvenile needles also had ~1.5-fold greater mesophyll volume fraction, ~3-fold greater chloroplast volume fraction and ~1.7-fold greater chloroplast exposed to mesophyll exposed surface area ratio, suggesting overall greater photosynthetic activity. Changes in needle traits were similar in aging adult needles, but the magnitude was generally less than the changes upon juvenile to adult transition. In adult needles, the fraction in support tissues scaled positively with known ranking of species tolerance of drought (P. halepensis > P. pinea > P. nigra). Across all species, and needle and plant ages, a negative correlation between volume fractions of mesophyll and structural tissues was observed, manifesting a trade-off between biomass investments in different needle functions. These results demonstrate that within the broad trade-off, juvenile and adult needle morphophysiotypes are separated by varying investments in support and photosynthetic functions. We suggest that the ecological advantage of the juvenile morphophysiotype is maximization of carbon gain of establishing saplings, while adult needle physiognomy enhances environmental stress tolerance of established plants.
Needle photosynthetic potentials strongly vary among primary (juvenile) and secondary (adult) needles (heteroblasty) in Pinus species, but there is limited understanding of the underlying structural, diffusional and chemical controls. We studied differences in needle photosynthetic characteristics among current‐year juvenile and adult needles and among different‐aged adult needles in Mediterranean pines Pinus halepensis Mill., P. pinea L. and P. nigra J. F. Arnold subsp. salzmannii (Dunal) Franco, hypothesizing that needle anatomical modifications upon juvenile‐to‐adult transition lead to reduced photosynthetic capacity due to greater limitation of photosynthesis by mesophyll conductance and due to an increase in the share of support tissues at the expense of photosynthetic tissues. We also hypothesized that such alterations occur with needle ageing, but to a lower degree. Photosynthetic capacity per dry mass was 2.4‐ to 2.7‐fold higher in juvenile needles, and this was associated with 3.4‐ to 3.7‐fold greater mesophyll diffusion conductance, 2‐ to 2.5‐fold greater maximum carboxylase activity of Rubisco (Vcmax) and 2.2‐ to 3‐fold greater capacity for photosynthetic electron transport (Jmax). The latter differences were driven by modifications in mesophyll volume fraction and changes in the share of nitrogen between structural and photosynthetic functions. Analogous changes in photosynthetic characteristics occurred with needle ageing, but their extent was less. These results indicate that conifer foliage photosynthetic machinery undergoes a profound change from a fast return strategy in juveniles to slow return stress‐resistant strategy in adults and that this strategy shift is driven by modifications in foliage biomass investments in support and photosynthetic functions as well as by varying mesophyll diffusional controls on photosynthesis. Changes in needle morphophysiotype during tree and needle ageing need consideration in predicting changes in tree photosynthetic potentials through tree ontogeny and during and among growing seasons. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13087/suppinfo is available for this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.