Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.
The aim of this study was to evaluate through strain gauge the strain distribution occurred around 3 Morse taper implants with positioning offset, by varying the types of copings: plastic and machined. Microunit prosthetic abutments were connected onto the implant platforms. Ten frameworks composed of 3 copings were casted in cobalt-chromium alloy as single block (Co-Cr). Half of the copings were machined (n=5) and half were made of plastics (n=5). Four strain gauges were placed into the polyurethane block tangential to the 3 implants. The frameworks were fixed at their respective sites with the aid of a retaining screw with torque of 20 N.cm, achieve with a mechanical torquemeter. The vertical load of 30 Kg was applied through a spherical point of 2 mm diameter for 10 s, onto each one of the 3 screws of the framework through a device for load application The records of the strain reading were submitted to ANOVA and Tukey tests (5%). There were statistically significant differences (p=0.0174) between the coping type used (machined and plastic). The micro strain mean values were: point C at the machined coping 282.5 ?m (±120.8), point B at the machined coping 229.5 ?m (±76.1), point A at the machined coping 209.8 ?m (±55.0), point C at the plastic coping 155.0 ?m (±30.5), point B at the plastic coping 146.2 ?m (±25.8) and point A at the plastic coping 130.36 ?m (±21.83). It was concluded that there was a significant difference between the coping types, once the plastic coping exerted smaller micro strain on Morse taper implants than the machined copings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.