A rare eclipse of the mysterious object Aurigae will occur in 2009-2011. We report an updated single-lined spectroscopic solution for the orbit of the primary star based on 20 years of monitoring at the CfA, combined with historical velocity observations dating back to 1897. There are 518 new CfA observations obtained between 1989 and 2009. Two solutions are presented. One uses the velocities outside the eclipse phases together with mid-times of previous eclipses, from photometry dating back to 1842, which provide the strongest constraint on the ephemeris. This yields a period of 9896.0 ± 1.6 days (27.0938 ± 0.0044 years) with a velocity semiamplitude of 13.84 ± 0.23 km s −1 and an eccentricity of 0.227 ± 0.011. The middle of the current ongoing eclipse predicted by this combined fit is JD 2,455,413.8 ± 4.8, corresponding to 2010 August 5. If we use only the radial velocities, we find that the predicted middle of the current eclipse is nine months earlier. This would imply that the gravitating companion is not the same as the eclipsing object. Alternatively, the purely spectroscopic solution may be biased by perturbations in the velocities due to the short-period oscillations of the supergiant.
We present an image-processing method that enhances the detection of regions of higher absorbance in optical mammograms. At the heart of this method lies a second-derivative operator that is commonly employed in edge-detection algorithms. The resulting images possess a high contrast, an automatic display scale, and a greater sensitivity to smaller departures from the local background absorbance. Moreover, the images are free of artifacts near the breast edge. This second-derivative method enhances the display of structural information in optical mammograms and may be used to robustly select areas of interest to be further analyzed spectrally to determine the oxygenation level of breast lesions.
We have previously reported a comparison between edge-corrected near-infrared optical mammograms and those that have undergone a further image-processing step based on a spatial second derivative. In this work, we go a step further by combining the second-derivative images from four wavelengths (690, 750, 788, and 856 nm) to obtain oxygenation-index images. While the spatial second derivative improves contrast and allows for visibility of fine structures in the images, thereby improving the sensitivity to tumor detection, additional information is needed to avoid false-positive results. The oxygenation-index images are introduced to address this issue. Oxygenation information may help discriminate benign from malignant breast lesions, thereby effectively complementing single-wavelength optical mammograms that display optically dense regions within the breast with high sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.