Leptin, a cytokine mainly produced by adipocytes, seems to play a crucial role in mammary carcinogenesis. In the present study, we explored the mechanism of leptin-mediated promotion of breast tumor growth using xenograft MCF-7 in 45-dayold female nude mice, and an in vitro model represented by MCF-7 three-dimensional cultures. Xenograft tumors, obtained only in animals with estradiol (E 2 ) pellet implants, doubled control value after 13 weeks of leptin exposure. In three-dimensional cultures, leptin and/or E 2 enhanced cellcell adhesion. This increased aggregation seems to be dependent on E-cadherin because it was completely abrogated in the presence of function-blocking E-cadherin antibody or EGTA, a calcium-chelating agent. In three-dimensional cultures, leptin and/or E 2 treatment significantly increased cell growth, which was abrogated when E-cadherin function was blocked. These findings well correlated with an increase of mRNA and protein content of E-cadherin in three-dimensional cultures and in xenografts. In MCF-7 cells both hormones were able to activate E-cadherin promoter. Mutagenesis studies, electrophoretic mobility shift assay, and chromatin immunoprecipitation assays revealed that cyclic AMP-responsive element binding protein and Sp1 motifs, present on E-cadherin promoter, were important for the up-regulatory effects induced by both hormones on E-cadherin expression in breast cancer MCF-7 cells. In conclusion, the present study shows how leptin is able to promote tumor cell proliferation and homotypic tumor cell adhesion via an increase of E-cadherin expression. This combined effect may give reasonable emphasis to the important role of this cytokine in stimulating primary breast tumor cell growth and progression, particularly in obese women. [Cancer Res 2007;67(7):3412-21]
We reported previously that the obesity hormone leptin is overexpressed in breast cancer biopsies. Here, we investigated molecular mechanisms involved in this process, focusing on conditions that are associated with obesity, that is, hyperinsulinemia and induction of hypoxia. By using quantitative real-time PCR, immunofluorescent detection of proteins and enzyme-linked immunosorbent assays, we found that treatment of MCF-7 breast cancer cells with high doses of insulin or the hypoxia-mimetic agent CoCl 2 , or culturing the cells under hypoxic conditions significantly increased the expression of leptin mRNA and protein. Notably, the greatest leptin mRNA and protein expression were observed under combined hyperinsulinemia and hypoxia or hypoxia-mimetic treatments. Luciferase reporter assays suggested that increased leptin synthesis could be related to the activation of the leptin gene promoter. DNA affinity precipitation and chromatin immunoprecipitation experiments revealed that insulin, CoCl 2 and/or hypoxia treatments augmented nuclear accumulation of hypoxia-inducible factor-1a (HIF-1a) and increased its interaction with several upstream leptin regulatory sequences, especially with the proximal promoter containing four hypoxia-response elements and three GC-rich regions. By using reverse chromatin precipitation, we determined that loading of HIF-1a on the proximal leptin promoter concurred with the recruitment of p300, the major HIF coactivator, suggesting that the HIF/p300 complex is involved in leptin transcription. The importance of HIF-1a in insulin-and CoCl 2 -activated leptin mRNA and protein expression was confirmed using RNA interference.
Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.
Psoralens (5-MOP and 8-MOP), a class of naturally occurring compounds, in combination with ultraviolect light are potent modulators of epidermal cell growth and differentiation. For a long time, photo-chemotherapy has been used in the treatment of psoriasis where it can reduce the number of cycling keratinocytes and decrease the IGF-1 receptors. However, the molecular mechanism of PUVA therapy remains unclear. In this study, we have evaluated, for the first time, in MCF-7 and SKBR-3 breast cancer cells the effects of 5-MOP (Bergapten), independently of its photoactivation, on the signalling pathways involved in cell cycle arrest and in apoptosis. Drug treatment induced a block in the G0/G1 phase and increased mRNA and protein levels of p53 and p21waf. These data correlate with a functional activation of caspase 8/caspase 9 together with DAPI staining and DNA ladder. Bergapten can transactivate p53 gene promoter in these cells and site-direct mutagenesis studies showed that the binding sequence of the nuclear factor NF-Y on p53 promoter is required for 5-MOP responsiveness. Besides, Bergapten increases NF-Y nuclear translocation through p38 MAPK activation. The same treatment impairs the PI3Kinase/AKT survival signal, in hormone-dependent MCF-7 cells even in the presence of IGF-I/E2 mitogenic factors. Here, we demonstrated that Bergapten, independently on the exposure to UV, generates membrane signalling pathways able to address apoptotic responses in breast cancer cells and to counteract the stimulatory effect of IGF-I/E2 on estrogen-receptor positive MCF-7 cell growth and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.