Ultra-high molar mass polyethylene (UHMMPE) is commonly used for ballistic-resistant body armor applications due to the superior strength of the fibers fabricated from this material combined with its low density. However, polymeric materials are susceptible to thermally induced degradation during storage and use, which can reduce the high strength of these fibers, and, thus, negatively impact their ballistic resistance. The objective of this work is to advance the field of lightweight and soft UHMMPE inserts used in various types of ballistic resistant-body armor via elucidating the mechanisms of chemical degradation and evaluating this chemical degradation, as well as the corresponding physical changes, of the UHMMPE fibers upon thermal aging. This is the first comprehensive study on thermally aged UHMMPE fibers that measures their decrease in the average molar mass via high-temperature size exclusion chromatography (HT-SEC) analysis. The decrease in the molar mass was further supported by the presence of carbon-centered free radicals in the polyethylene that was detected using electron paramagnetic resonance (EPR) spectroscopy. These carbon-centered radicals result from a cascade of thermo-oxidative reactions that ultimately induce CC ruptures along the backbone of the polymer. Changes in the crystalline morphology of the UHMMPE fibers were also observed through wide-angle X-ray diffraction (WAXS), showing an increase in the amorphous regions, which promotes oxygen diffusion into the material, specifically through these areas. This increase in the amorphous fraction of the highly oriented polyethylene fibers has a synergistic effect with the thermo-oxidative degradation processes and contributes significantly to the decrease in their molar mass.
Soft body armor is typically comprised of materials such as aramid. Recently, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and PPTA were introduced to the body armor marketplace. The long-term stability of these copolymer fibers have not been the subject of much research, however they may be sensitive to hydrolysis due to elevated humidity because they are condensation polymers. Efforts to evaluate the impact of environmental conditions on fiber strength is very important for the adoption of these materials in armor systems. Three PBIA-based fibers were selected for the study, and were aged at 25 °C, 75% RH; 43 °C, 41% RH; 55 °C, 60% RH; and 70 °C, 76% RH for up to 524 days. Molecular spectroscopy, scanning electron microscopy, and single fiber tensile testing were performed to characterize changes in their chemical structure, tensile strength, and failure strain as a function of exposure time to different conditions. The fibers were all found to have some reduction in strength at high humidity conditions, with an approximately 14% reduction for the copolymers and a 29% reduction for the homopolymer. Molecular spectroscopy revealed some changes which suggest that hydrolysis of the benzimidazole ring is occurring at these elevated temperatures, possibly explaining the observed change in strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.