The Prechtl General Movement Assessment (GMA) has become a cornerstone assessment in early identification of cerebral palsy (CP), particularly during the fidgety movement period at 3–5 months of age. Additionally, assessment of motor repertoire, such as antigravity movements and postural patterns, which form the Motor Optimality Score (MOS), may provide insight into an infant’s later motor function. This study aimed to identify early specific markers for ambulation, gross motor function (using the Gross Motor Function Classification System, GMFCS), topography (unilateral, bilateral), and type (spastic, dyskinetic, ataxic, and hypotonic) of CP in a large worldwide cohort of 468 infants. We found that 95% of children with CP did not have fidgety movements, with 100% having non-optimal MOS. GMFCS level was strongly correlated to MOS. An MOS > 14 was most likely associated with GMFCS outcomes I or II, whereas GMFCS outcomes IV or V were hardly ever associated with an MOS > 8. A number of different movement patterns were associated with more severe functional impairment (GMFCS III–V), including atypical arching and persistent cramped-synchronized movements. Asymmetrical segmental movements were strongly associated with unilateral CP. Circular arm movements were associated with dyskinetic CP. This study demonstrated that use of the MOS contributes to understanding later CP prognosis, including early markers for type and severity.
Infant's spontaneous movements mirror integrity of brain networks, and thus also predict the future development of higher cognitive functions. Early recognition of infants with compromised motor development holds promise for guiding early therapies to improve lifelong neurocognitive outcomes. It has been challenging, however, to assess motor performance in ways that are objective and quantitative. Novel wearable technology has shown promise for offering efficient, scalable and automated methods in movement assessment. Here, we describe the development of an infant wearable, a multi-sensor smart jumpsuit that allows mobile data collection during independent movements. A deep learning algorithm, based on convolutional neural networks (CNNs), was then trained using multiple human annotations that incorporate the substantial inherent ambiguity in movement classifications. We also quantify the substantial ambiguity of a human observer, allowing its transfer to improving the automated classifier. Comparison of different sensor configurations and classifier designs shows that four-limb recording and end-toend CNN classifier architecture allows the best movement classification. Our results show that quantitative tracking of independent movement activities is possible with a human equivalent accuracy, i.e. it meets the human inter-rater agreement levels in infant posture and movement classification.
IntroductionInfants with asymmetric brain lesions are at high risk of developing congenital hemiplegia. Action–observation training (AOT) has been shown to effectively improve upper limb motor function in adults with chronic stroke. AOT is based on action observation, whereby new motor skills can be learnt by observing motor actions. This process is facilitated by the Mirror Neuron System, which matches observed and performed motor actions. This study aims to determine the efficacy of AOT in: (1) influencing the early development of reaching and grasping of typically developing infants and (2) improving the upper limb activity of infants with asymmetric brain lesions.Methods and analysisThis study design comprises two parallel randomised sham-controlled trials (RCTs) in: (1) typically developing infants (cohort I) and (2) infants with asymmetric brain lesions (eg, arterial stroke, venous infarction, intraventricular haemorrhage or periventricular leukomalacia; cohort II). Cohort II will be identified through a neonatal ultrasound or neonatal MRI. A sham control will be used for both RCTs, taking into consideration that it would be unethical to give no intervention to an at-risk population. Based on a two-tailed t test of two independent means, with a significance (α) level of 0.05, 80% power, predicted effect size of 0.8 and a 90% retention rate, we require 20 participants in each group (total sample of 40) for cohort I. The sample size for cohort II was based on the assumption that the effect size of the proposed training would be similar to that found by Heathcock et al in preterm born infants (n=26) with a mean effect size of 2.4. Given the high effect size, the calculation returned a sample of only four participants per group, on a two-tailed t test, with a significance (α) level of 0.05 and 80% power. As cohort II will consist of two subgroups of lesion type (ie, arterial stroke and venous infarction), we have quadrupled the sample to include 16 participants in each group (total sample of 32). Infants will be randomised to receive either AOT or standard Toy Observation Training (TOT). Both interventions will be of 4 weeks’ duration, from the infant's 9th–13th post-term week of age. Three sessions of 5 min each will be performed each day for 6 days/week (total of 6 h over 28 days). Parents of the AOT group will repeatedly show the infant a grasping action on a set of three toys, presented in random order. Parents of the TOT group will show the infant the same set of three toys, in random order, without demonstrating the grasping action. At 14, 16 and 18 weeks, the quantity and quality of reaching and grasping will be measured using the Grasping and Reaching Assessment of Brisbane; symmetry of reaching and grasping will be measured using the Hand Assessment of Infants (HAI) and pressure of grasping for each hand with a customised pressure sensor. At 6 months’ corrected age, the primary outcome measures will be the HAI and Bayley Scales of Infant and Toddler Development (third edition; BSID III), to measure cog...
There is overwhelming evidence that autism spectrum disorder (ASD) is related to altered brain connectivity. While these alterations are starting to be well characterized in subjects where the clinical picture is fully expressed, less is known on their earlier developmental course. In the present study we systematically reviewed current knowledge on structural connectivity in ASD infants and toddlers. We searched PubMed and Medline databases for all English language papers, published from year 2000, exploring structural connectivity in populations of infants and toddlers whose mean age was below 30 months. Of the 264 papers extracted, four were found to be eligible and were reviewed. Three of the four selected studies reported higher fractional anisotropy values in subjects with ASD compared to controls within commissural fibers, projections fibers, and association fibers, suggesting brain hyper-connectivity in the earliest phases of the disorder. Similar conclusions emerged from the other diffusion parameters assessed. These findings are reversed to what is generally found in studies exploring older patient groups and suggest a developmental course characterized by a shift toward hypo-connectivity starting at a time between two and four years of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.