Highlights d Cardiac fibroblasts and endothelial cells induce hiPSCcardiomyocyte maturation d CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes d cAMP-pathway activation contributes to hiPSCcardiomyocyte maturation d Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Fibro-adipose substitution has a double detrimental effect on the myocardium in arrhythmogenic cardiomyopathy (ACM), worsening arrhythmogenesis by creating a non-conductive substrate, and causing ventricular dysfunction leading to heart failure. Notably, to-date no etiological therapy is available. This work introduces, for the first time, the stromal cardiac compartment as a key player in ACM ventricular adipose substitution: we demonstrated that cardiac human mesenchymal stromal cells undergo adipogenic differentiation both in ACM explanted hearts and in culture through a PKP2-dependent mechanism. Cardiac mesenchymal stromal cells constitute a suitable cellular platform for future mechanistic studies and a potential target for future therapies.
Tissue-like structures from human pluripotent stem cells containing multiple cell types are transforming our ability to model and understand human development and disease. Here we describe a protocol to generate cardiomyocytes (CMs), cardiac fibroblasts and cardiac endothelial cells, the three principal cell types in the heart, from human induced pluripotent stem cells (hiPSCs) and combine these in three-dimensional cardiac microtissues (MTs). We include details of how to differentiate, isolate, cryopreserve and thaw the component cells and how to construct and analyze the MTs. The protocol supports hiPSC-CM maturation and allows replacement of one or more of the three heart cell types in the MTs with isogenic variants bearing disease mutations. Differentiation of each cell type takes approximately 30 days, while MT formation and maturation requires another 20 days. No specialist equipment is needed and the method is low cost, requiring just 5,000 cells per MT.
Keywordshuman induced pluripotent stem cell-derived cardiomyocytes; human induced pluripotent stem cell-derived cardiac endothelial cells; human induced pluripotent stem cell-derived cardiac #
SERCA2a is the Ca2+ ATPase playing the major contribution in cardiomyocyte (CM) calcium removal. Its activity can be regulated by both modulatory proteins and several post-translational modifications. The aim of the present work was to investigate whether the function of SERCA2 can be modulated by treating CMs with the histone deacetylase (HDAC) inhibitor suberanilohydroxamic acid (SAHA). The incubation with SAHA (2.5 µM, 90 min) of CMs isolated from rat adult hearts resulted in an increase of SERCA2 acetylation level and improved ATPase activity. This was associated with a significant improvement of calcium transient recovery time and cell contractility. Previous reports have identified K464 as an acetylation site in human SERCA2. Mutants were generated where K464 was substituted with glutamine (Q) or arginine (R), mimicking constitutive acetylation or deacetylation, respectively. The K464Q mutation ameliorated ATPase activity and calcium transient recovery time, thus indicating that constitutive K464 acetylation has a positive impact on human SERCA2a (hSERCA2a) function. In conclusion, SAHA induced deacetylation inhibition had a positive impact on CM calcium handling, that, at least in part, was due to improved SERCA2 activity. This observation can provide the basis for the development of novel pharmacological approaches to ameliorate SERCA2 efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.