Aim Ecological data collected by the general public are valuable for addressing a wide range of ecological research and conservation planning, and there has been a rapid increase in the scope and volume of data available. However, data from eBird or other large‐scale projects with volunteer observers typically present several challenges that can impede robust ecological inferences. These challenges include spatial bias, variation in effort and species reporting bias. Innovation We use the example of estimating species distributions with data from eBird, a community science or citizen science (CS) project. We estimate two widely used metrics of species distributions: encounter rate and occupancy probability. For each metric, we critically assess the impact of data processing steps that either degrade or refine the data used in the analyses. CS data density varies widely across the globe, so we also test whether differences in model performance are robust to sample size. Main conclusions Model performance improved when data processing and analytical methods addressed the challenges arising from CS data; however, the degree of improvement varied with species and data density. The largest gains we observed in model performance were achieved with 1) the use of complete checklists (where observers report all the species they detect and identify, allowing non‐detections to be inferred) and 2) the use of covariates describing variation in effort and detectability for each checklist. Occupancy models were more robust to a lack of complete checklists. Improvements in model performance with data refinement were more evident with larger sample sizes. In general, we found that the value of each refinement varied by situation and we encourage researchers to assess the benefits in other scenarios. These approaches will enable researchers to more effectively harness the vast ecological knowledge that exists within CS data for conservation and basic research.
Citizen science data are valuable for addressing a wide range of ecological research questions, and there has been a rapid increase in the scope and volume of data available. However, data from large-scale citizen science projects typically present a number of challenges that can inhibit robust ecological inferences. These challenges include: species bias, spatial bias, variation in effort, and variation in observer skill.To demonstrate key challenges in analysing citizen science data, we use the example of estimating species distributions with data from eBird, a large semi-structured citizen science project. We estimate three widely applied metrics for describing species distributions: encounter rate, occupancy probability, and relative abundance. For each method, we outline approaches for data processing and modelling that are suitable for using citizen science data for estimating species distributions.Model performance improved when data processing and analytical methods addressed the challenges arising from citizen science data. The largest gains in model performance were achieved with two key processes 1) the use of complete checklists rather than presence-only data, and 2) the use of covariates describing variation in effort and detectability for each checklist. Including these covariates accounted for heterogeneity in detectability and reporting, and resulted in substantial differences in predicted distributions. The data processing and analytical steps we outlined led to improved model performance across a range of sample sizes.When using citizen science data it is imperative to carefully consider the appropriate data processing and analytical procedures required to address the bias and variation. Here, we describe the consequences and utility of applying our suggested approach to semi-structured citizen science data to estimate species distributions. The methods we have outlined are also likely to improve other forms of inference and will enable researchers to conduct robust analyses and harness the vast ecological knowledge that exists within citizen science data.
This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmerc ial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
An occupancy model makes use of data that are structured as sets of repeated visits to each of many sites, in order estimate the actual probability of occupancy (i.e., proportion of occupied sites) after correcting for imperfect detection using the information contained in the sets of repeated observations. We explore the conditions under which preexisting, volunteer-collected data from the citizen science project eBird can be used for fitting occupancy models. Because the majority of eBird’s data are not collected in the form of repeated observations at individual locations, we explore two ways in which the single-visit records could be used in occupancy models. First, we assess the potential for space-for-time substitution: aggregating single-visit records from different locations within a region into pseudo-repeat visits. On average, eBird’s observers did not make their observations at locations that were representative of the habitat in the surrounding area, which would lead to biased estimates of occupancy probabilities when using space-for-time substitution. Thus, the use of space-for-time substitution is not always appropriate. Second, we explored the utility of including data from single-visit records to supplement sets of repeated-visit data. In a simulation study we found that inclusion of single-visit records increased the precision of occupancy estimates, but only when detection probabilities are high. When detection probability was low, the addition of single-visit records exacerbated biases in estimates of occupancy probability. We conclude that subsets of data from eBird, and likely from similar projects, can be used for occupancy modeling either using space-for-time substation or supplementing repeated-visit data with data from single-visit records. The appropriateness of either alternative will depend on the goals of a study and on the probabilities of detection and occupancy of the species of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.