Abstract-Heart failure leads to gross cardiac structural changes. While cardiac resynchronization therapy (CRT) is a recognized treatment for restoring synchronous activation, it is not clear how changes in cardiac shape and size affect the electrical pacing therapy. This study used a human heart computer model which incorporated anatomical structures such as myofiber orientation and a Purkinje system (PS) to study how pacing affected failing hearts. The PS was modeled as a tree structure that reproduced its retrograde activation feature. In addition to a normal geometry, two cardiomyopathies were modeled: dilatation and hypertrophy.A biventricular pacing protocol was tested in the context of atrio-ventricular block. The contribution of the PS was examined by removing it, as well as by increasing endocardial conductivity. Results showed that retrograde conduction into the PS was a determining factor for achieving intraventricular synchrony. Omission of the PS led to an overestimate of the degree of electrical dyssynchrony while assessing CRT. The activation patterns for the three geometries showed local changes in the order of activation of the lateral wall in response to the same pacing strategy. These factors should be carefully considered when determining lead placement and optimizing device parameters in clinical practice.
The development of biophysical models of the heart has the potential to get insights in the patho-physiology of the heart, which requires to accurately modeling anatomy and function. The electrical activation sequence of the ventricles depends strongly on the cardiac conduction system (CCS). Its morphology and function cannot be observed in vivo, and therefore data available come from histological studies. We present a review on data available of the peripheral CCS including new experiments. In order to build a realistic model of the CCS we designed a procedure to extract morphological characteristics of the CCS from stained calf tissue samples. A CCS model personalized with our measurements has been built using L-systems. The effect of key unknown parameters of the model in the electrical activation of the left ventricle has been analyzed. The CCS models generated share the main characteristics of observed stained Purkinje networks. The timing of the simulated electrical activation sequences were in the physiological range for CCS models that included enough density of PMJs. These results show that this approach is a potential methodology for collecting knowledge-domain data and build improved CCS models of the heart automatically.
The electrorotation velocity of spherical colloidal polystyrene particles suspended in an electrolyte solution is numerically calculated using a network simulation method. The expression for the electroosmotic contribution to the electrorotation used in previous works is generalized for the case of thick double layers. The results are in good agreement with the existing theoretical results when applicable, and they extend to ranges where these theories cannot be applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.