Black oat (Avena strigosa Schreb) is one of the most important small grain cereals for animal feeding in southern Brazil. Despite grain yield, black oat is also cultivated for ensiling; however, it is not an easy forage to be stored in anaerobic conditions, compared with maize, for example. According to Haigh (1990), a content of water-soluble carbohydrates (WSC) over 37 g kg −1 DM in herbage is necessary for an adequate fermentation. Whole crop black oat WSC content ranges from 139 g to 79 g kg −1 DM, for milky and dough grain stages, respectively.However, black oat herbage has a high buffer capacity, demanding a larger quantity of water-soluble carbohydrates ABSTRACT -We aimed to evaluate the effects of glyphosate as a chemical desiccant on the nutritional quality, fermentation pattern, and aerobic stability of wilted black oat (Avena strigosa Schreb) silage. Black oat sowing occurred in the first fortnight of May 2013. Desiccant application took place when oat reached milky/dough grain stage (96 days after planting). Glyphosate dosages evaluated were 0, 500, 750, 1000, and 1250 mL ha −1 . Three days after desiccation, all treatments were ensiled, and the silos were kept stored for 150 days. A completely randomized design was used, and all statistical procedures were performed by means of Bayesian Inference. Treating herbage prior to ensiling from 500 mL ha −1 glyphosate increased dry matter and organic matter contents compared with control. On the other hand, fiber content decreased linearly for desiccated silages, as shown by the negative slopes for neutral detergent fiber, acid detergent fiber, and cellulose. The highest concentrations of hemicellulose and neutral detergent insoluble nitrogen occurred for the dosages of 729.96 mL ha −1 and 759.52 mL ha −1 glyphosate, respectively. Wilted silage had less concentration of acetic acid and isovaleric acid and presented a higher amount of 2,3-butanediol. Due to the lack of beneficial short-chain fatty acids, treated silages had a higher organic matter loss (0.1 g mL −1 ) and reached a maximum pH (0.009 h mL −1 ) more quickly than control silage, after aerobic exposure. In this way, for wilted black oat silage production, harvested at milky/dough grain stage, the application of 500 mL ha −1 glyphosate is recommended.
Exogenous fibrolytic enzymes (EFE) improve the energy availability of grains for nonruminant animals by reducing encapsulation of the endosperm nutrients within grain cell walls; however, these benefits are unknown in the treatment of corn-based silage for cattle. The objective of the present study was to evaluate the effects of adding EFE at ensiling on the nutritive value of high-moisture corn (HMC) and snaplage (SNAP) for finishing Nellore bulls. The EFE dose was 100 g/Mg fresh matter in both HMC and SNAP. Diets were 1) a SNAP + HMC control (without enzyme addition); 2) SNAP + HMC EFE (with enzymes); 3) a whole-plant corn silage (WPCS) + HMC control (without enzyme addition); and 4) WPCS + HMC EFE (with enzymes). In addition to the silages, the diets were also composed of soybean hulls, soybean meal, and mineral–vitamin supplement. The statistical design was a randomized complete block with a factorial arrangement of treatments, and the experiment lasted 122 d. For in situ and in vitro analyses, 2 cannulated dry cows were used. There was no interaction between the diets and EFE application (ADG, P = 0.92; DMI, P = 0.77; G:F, P = 0.70), and there was no difference between the SNAP and WPCS diets regarding the DMI (P = 0.53), ADG (P = 0.35), and feed efficiency (ADG:DMI, P = 0.83). Adding EFE to the HMC and SNAP at ensiling did not affect ADG but decreased DMI (P = 0.01), resulting in greater feed efficiency by 5.91% (P = 0.04) than that observed in animals fed diets without the addition of EFE. Addition of EFE to HMC resulted in reduced NDF content and increased in vitro and in situ DM digestibility compared with untreated HMC. No effects were found for the addition of EFE to SNAP. Fecal starch decreased with EFE application (P = 0.05). Therefore, the diet energy content (TDN, NEm, and NEg) calculated from animal performance increased (P = 0.01) with the addition of EFE to HMC. In conclusion, exchanging the NDF from WPCS with that from SNAP did not affect the performance of finishing cattle, whereas the addition of EFE to HMC at ensiling improved animal performance by increasing the energy availability of the grain.
In Brazil, maize (Zea mays) is the main crop cultivated for silage production due to its excellent dry matter (DM) yield, nutritional composition (high starch content) and adaptability of Brazilian agricultural systems (Daniel et al., 2019). Maize is also an easy forage to ensile due to its low buffering capacity, high sugar content as well as high indigenous lactic acid bacteria counts (Jatkauskas & Vrotniakiene, 2013;Parvin et al., 2010). Ruminant diets formulated with maize silage often needs protein supplements to meet animal requirements. Legume crops, on the other hand, present higher protein content than maize silage (Dewhurst, 2013); in this way, mixing
Twenty Holstein cows at 168 ± 87 d in milk (mean ± SD) were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement to evaluate the effects of 2 storage lengths (30 or 90 d) and the presence of sodium benzoate (control or 0.2% as fed) on the nutritive value of reconstituted sorghum grain silages (RSGS). For each treatment, dry ground sorghum grain was rehydrated to 35% moisture and ensiled in 200-L plastic drums. The treatments were RSGS stored for 30 d without sodium benzoate ( 30CON), RSGS stored for 30 d with sodium benzoate (30 BEN), RSGS stored for 90 d without sodium benzoate (90 CON) and RSGS stored for 90 d with sodium benzoate (90 BEN). Diets contained 16.3% RSGS. Silages stored for 90 d had higher concentrations of 1,2-propanediol, soluble protein, and ammonia nitrogen than did those stored for 30 d. Sodium benzoate reduced ethanol and ethyl-ester formation. Silages stored for 90 d had higher starch (89.3 vs. 86.9%) and protein (57.1 vs. 54.0%) digestibility compared with silages stored for 30 d. The ruminal acetate-to-propionate ratio tended to be lower in RSGS stored for 90 d than in RSGS stored for 30 d (3.75 vs. 3.34). Milk yield increased from 30.0 kg/d in cows fed RSGS stored for 30 d to 31.2 kg/d in cows fed RSGS stored for 90 d, without a change in dry matter intake (23.5 kg/d on average). Hence, feed efficiency and milk N efficiency also had tendencies to increase in cows fed RSGS stored for 90 d. Sodium benzoate did not alter cow performance but slightly increased plasma glucose (65.2 vs. 63.6 mg/dL). In conclusion, increasing the storage period of RSGS from 30 to 90 d improved starch and protein digestibility, milk yield, and feed efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.