Arsenic impairs male reproductive functions. However, it is not clear whether different arsenic compounds similarly affect fertility. In this study, we compared the impact of sodium arsenite and arsenate on sperm quality and fertility. After 56 d exposure, male Wistar rats were mated and pregnant females were evaluated by fertility indexes. Clearly, exposure to 10 mg/L arsenite reduced daily sperm production via HO overproduction and germ cells loss. Animals from this group also showed a decrease in epididymal sperm counts and percentage of sperm with intact membranes. Moreover, they presented low fertility potential and high preimplantation loss. In contrast, 10 mg/L arsenate caused oxidative stress in testis, mineral imbalance in epididymis, and sperm membranes damage, with no effects on fertility. Both arsenic compounds at 0.01 mg/L altered reproductive parameters. We concluded that arsenite is more harmful than arsenate to sperm quality and male fertility, with negative influences in early pregnancy.
The toxic effects of cadmium (Cd) on reproductive parameters are widely described in the literature. Experimental models often make use of the intraperitoneal route (i.p.), although human intoxication occurs preferentially by the oral route and can be continuous. However, little is known about the effect of Cd administration routes on the testicular structure. Thus, this study investigated the testicular impact of Cd exposure comparing both i.p. and oral routes, both single dose (SD), in addition to the oral route in fractional doses (FD). Swiss adult male mice received CdCl2 1.5 mg/kg i.p., 30 mg/kg oral SD, and 4.28 mg/kg oral FD for 7 consecutive days. The Cd bioaccumulation was observed in all routes, mainly in the oral FD route. The concentrations of testicular Ca and Cu decreased in all animals exposed to Cd, while Zn and Mn decreased only in the i.p. route. Testicular SOD activity was reduced in both routes of oral administration, while CAT increased in the i.p. route, and GST increased in all animals exposed to Cd. Changes in the tubular parameters and cell viability were observed in both routes of Cd administration but were more intense in the oral route, mainly in the FD. Serum testosterone concentration was reduced in both routes of oral administration. Tubular damage, such as the vacuolization of the seminiferous epithelium, germ cell detachment, and seminiferous tubule degeneration, occurred in all groups exposed to Cd. Therefore, the oral Cd administration presented greater potential to promote testicular damage, mainly when the metal was given in a fractionated way.
Aluminum (Al) is the most widely distributed metal in the environment and is extensively used in human daily life without any known biological function. It is known that exposure to high concentrations of Al impacts negatively on serum testosterone levels, testicular histomorphometry, and sperm parameters; however, no information is available about the effects of low exposure levels on reproduction. International organizations have established the Al concentration tolerated in drinking water as 3.35 × 10 mg/kg. Therefore, we aimed to compare the effects of long-term exposure to low and high concentrations of Al on male reproductive functions, focusing on testis, epididymis, and sperm parameters. Adult Wistar rats were exposed to aluminum chloride (AlCl) at 6.7 × 10, 3.35 × 10, 10, and 40 mg/kg for 112 days by gavage. Al-exposed animals presented low values of testis and epididymis weight, and serum testosterone levels when compared to controls. The stereology of Leydig cells, epididymis histomorphometry, sperm motility, and structural integrity of sperm membranes changed depending on the Al concentration. In regard to epididymis histomorphometry, the initial segment and caput regions were more affected by Al exposure than distal regions. Otherwise, the histology of testis and epididymis did not alter after the Al exposure, as well as sperm morphology. In summary, we concluded that the consequences of Al exposure at low levels were as negative as high levels on reproductive parameters, suggesting adverse impact on male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.