In humans, a hyperactivity of glucocorticoid metabolism was postulated to be involved in the intrauterine programming of the metabolic syndrome in adulthood. We studied in rats the effects of overfeeding, obtained by reducing the size of the litter in the immediate postnatal period, a time crucial for neuroendocrine maturation such as late gestation in humans. Overfeeding induced early-onset obesity and accelerated the maturation of the hypothalamo-pituitary-adrenal (HPA) axis together with an upregulation of adipose tissue glucocorticoid receptor (GR) mRNA. In adulthood, neonatally overfed rats presented with moderate increases in basal and stress-induced corticosterone secretion and striking changes in visceral adipose tissue glucocorticoid signaling, that is, enhanced GR and 11-hydroxysteroid dehydrogenase type 1 mRNA levels. The above-mentioned alterations in the endocrine status of overfed rats were accompanied by a moderate overweight status and significant metabolic disturbances comparable to those described in the metabolic syndrome. Our data demonstrate for the first time that postnatal overfeeding accelerates the maturation of the HPA axis and leads to permanent upregulation of the HPA axis and increased adipose tissue glucocorticoid sensitivity. Thus, the experimental paradigm of postnatal overfeeding is a powerful tool to understand the pathophysiology of glucocorticoid-induced programming of metabolic axes. Diabetes 54: [197][198][199][200][201][202][203] 2005 N umerous clinical and biological findings indicate that glucocorticoids are involved in the pathophysiology of abdominal obesity and its accompanying complications. Indeed, an excess of glucocorticoids, when associated with hyperinsulinism, favors an increase of lipogenesis and a decrease of lipolysis, together with a stimulation of hepatic neoglucogenesis and an inhibition of peripheral glucose utilization (1). Alterations in the hypothalamo-pituitary-adrenal (HPA) axis have been described in human obesity and in rodent models of obesity. They could involve a hyperactivity of the central command of ACTH secretion, secondary to an increased exposure or sensitization to stress (2) or decreased negative glucocorticoid feedback (3). In addition, changes in peripheral glucocorticoid signaling with increased visceral adipose tissue glucocorticoid receptor (GR) concentrations and local reactivation of circulating inert cortisone (11-dehydrocorticosterone in rodents) to cortisol (corticosterone) driven by 11-hydroxysteroid dehydrogenase type 1 (11-HSD-1) could play a pivotal role (4). However, the origins of the abovementioned dysregulations have not been established.Clinical and experimental evidence shows that the environment during the perinatal period plays an important role in the regulation of both metabolic and hormonal axes in adulthood. In humans, hyperglycemia and hyperinsulinemia in macrosomic fetuses of diabetic mothers were shown to favor later development of overweight (5). Conversely, it has been demonstrated that intrauterine g...
Insulin-induced hypoglycemia (IIH) is a strong stimulator of pituitary ACI`H secretion. The mechanisms by which IIH activates the corticotrophs are still controversial. Indeed, in rats the variations of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) secretion in hypophysial portal blood (HPB) during IIH have been diversely appreciated. This may be due to the stressful conditions required for portal blood collection in rats. We studied the effects of IIH on the secretion of CRF and AVP in HPB and on the release of ACTH and cortisol in peripheral plasma in conscious, unrestrained, castrated rams. After the injection of a low (0.2 IU/kg) or high dose (2 IU/kg) of insulin, AC'TH and cortisol levels in peripheral plasma increased in a dose-related manner. After injection of the low dose of insulin, CRF and AVP secretion in HPB were equally stimulated. After injection of the high dose of insulin, CRF secretion was further stimulated, while AVP release was dramatically increased. These results suggest that when the hypoglycemia is moderate, CRF is the main factor triggering ACITI release, and that the increased AVP secretion potentiates the stimulatory effect of CRF. When hypoglycemia is deeper, AVP secretion becomes predominant and may by itself stimulate ACTH release. (J. Clin. Invest. 1990.
The acute effect of a new GH-releasing peptide, hexarelin (1 mg, iv), on GH secretion and the mechanisms involved in its changes were investigated in conscious sheep. Peripheral GH levels and GH-releasing hormone (GHRH) and somatostatin concentrations in hypophysial portal blood were measured in six rams. An increase in jugular GH levels was observed 15 min after hexarelin injection (9.1 +/- 1.8 vs. 3.9 +/- 0.8 ng/ml; P < 0.05). This was associated with a stimulation of GHRH release into hypophysial portal blood (145.4 +/- 19.9 vs. 59.2 +/- 10.8 pg/ml; P < 0.01) without a change in somatostatin secretion. Our data indicate that GH-releasing peptide-induced GH stimulation in the sheep involves an activation of GHRH neurons in addition to the previously demonstrated direct effect on the pituitary cells.
In order to study the involvement of the hypothalamic corticotropin-releasing factor (CRF) in catecholamine-induced adrenocorticotropin (ACTH) secretion, we have measured CRF levels in rat hypophysial portal blood (HPB) after the pharmacological destruction of the ventral noradrenergic bundle (VNAB), using 6-hydroxydopamine (6-OHDA) stereotaxically injected into the VNAB. CRF levels in HPB were measured by radioimmunoassay, and the effects of 6-OHDA injection were controlled by the determination of catecholamine concentrations in the total hypothalamus. VNAB lesions induced a dramatic decrease in norepinephrine and epinephrine hypothalamic concentration. The CRF levels in HPB were also significantly reduced. These results suggest that central catecholamines exert a direct stimulatory control on the CRF release and play a major role in stress-induced ACTH secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.