Predictive control is a flexible control methodology that can optimize performance while satisfying current and voltage constraints. Its application in the power electronics domain is however hampered by the high computational demands associated with it. In this paper, piecewise-affine neural networks are explored to greatly simplify these controllers and allow for an inexpensive implementation in commercial hardware. More specifically, we tackle the problem of enhancing the start-up transient response of a step-down dc-dc converter while also satisfying inductor current constraints. We analyze the neural network architecture, and detail its training and validation procedures. The learned controller is then embedded on an inexpensive 80-MHz microcontroller, and experimental results are provided showing that the whole control algorithm can be executed in under 30 microseconds.INDEX TERMS Model predictive control, embedded deployment, neural networks, dc-dc converters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.