Appropriate remodeling of the female lower reproductive tract and pelvic floor is essential during normal mammalian pregnancy, labor, and postpartum recovery. During mouse pregnancy, in addition to reproductive tract modifications, the pubic symphysis (PS) is remodeled into a soft interpubic ligament (IpL) to provide safe delivery of the offspring and fast postpartum recovery. Although temporal changes in the phenotypes of myeloid cells, such as mononuclear phagocytes, are crucial to remodeling the lower reproductive tract organs in preparation for a safe delivery, little is known about the involvement of recruited monocytes or macrophages in mouse PS remodeling. We used combined light microscopy, electron microscopy, and qPCR analysis to investigate the profile of recruited monocytes and macrophage polarization markers in C57Bl6 mouse interpubic tissues during pregnancy (D12, D18, and D19) and early days postpartum (1 dpp and 3 dpp) to better identify their presence in proper remodeling of the mouse PS. Our morphological data show that the number of recruited monocytes is increased in interpubic tissues and that recruited monocytes differentiate into proinflammatory or anti-inflammatory macrophage phenotypes from D18 to 3 dpp, which may contribute to dynamic changes in the gene expression of specific inflammatory mediators involved in interpubic tissue remodeling at these time points. Therefore, our morphological and quantitative gene expression data suggest that both differentiated macrophages from recruited monocytes and polarized macrophages may collaborate for IpL relaxation at labor and the appropriate repair of the PS after the first pregnancy.
Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.