Immunity encompasses all mechanisms and responses used by the organism to defend itself against bacteria, viruses or parasites. Adequate supply and balance of nutrients are required for proper e⁄ciency of the host defences. Research has identi¢ed dietary factors that a¡ect human and animal immune responses like amino acids, fatty acids, minerals and vitamins. Some of these nutrients have been proven to have speci¢c actions on immunity when provided at pharmacological doses. This paper will review these nutrients and their current use in aquaculture. The immune system is an e⁄cient but complex system. Its complexity has made the assessment of the e¡ects of diets di⁄cult. Nevertheless, the standardization of methodology as well as the use of new techniques at the cell or the gene level should help to better understand the mechanisms of immune modulation. This paper will review the major functions of ¢sh and shrimp immune system and the methodologies used. Cellular and humoral functions including cytokines will be discussed in relation to potential means to modulate them and the underlying mechanism. A better understanding of the mechanisms of modulation of the immune functions should help in the discovery of new dietary factors to improve the immune status of the animal, leading to better disease resistance.
The experiment was designed to investigate the dietary factors that might enhance or interfere with astaxanthin (Ax) absorption in salmon including potentially interfering factors such as certain carotenoids (zeaxanthin and lutein), plant sterols, fibre and enhancing compounds such as cholesterol and vitamin E. Two hundred and eighty‐eight salmon (778 ± 78 g) were reared in sea water under controlled conditions and fed practical experimental diets. The experimental diets were supplemented with 40 mg Ax kg−1, in addition to various dietary factors, including cholesterol (2%), vitamin E (450 IU kg−1), wheat bran (5%), lutein (40 mg kg−1), zeaxanthin (40 mg kg−1) and phytosterol (2%). After 26 days of feeding, blood was collected and plasma was separated to determine the plasma Ax concentration. Ax was not detected in the plasma of fish fed the non‐pigmented diet. Fish fed diet containing 2% cholesterol significantly improved Ax absorption, which was reflected in the higher Ax concentration in plasma of Atlantic salmon. Other supplements including vitamin E, wheat bran, lutein, zeaxanthin and phytosterols in diet had no significant effect on plasma Ax concentration. Fish fed diet containing 2% cholesterol significantly increased cholesterol concentration in fish plasma. Phytosterol had no benefit to lower cholesterol plasma level in fish fed 2% phytosterol‐supplemented diet.
Intestinal inflammation in farmed fish is a non-infectious disease that deserves attention because it is a major issue linked to carnivorous fishes. The current norm is to formulate feeds based on plant-derived substances, and the ingredients that have antinutritional factors are known to cause intestinal inflammation in fishes such as Atlantic salmon. Hence, we studied inflammatory responses in the distal intestine of Atlantic salmon that received a feed rich in soybean derivatives, employing histology, transcriptomic and flow cytometry techniques. The fish fed on soy products had altered intestinal morphology as well as upregulated inflammation-associated genes and aberrated ion transport-linked genes. The enriched pathways for the upregulated genes were among others taurine and hypotaurine metabolism, drug metabolism—cytochrome P450 and steroid biosynthesis. The enriched gene ontology terms belonged to transmembrane transporter- and channel-activities. Furthermore, soybean products altered the immune cell counts; lymphocyte-like cell populations were significantly higher in the whole blood of fish fed soy products than those of control fish. Interestingly, the transcriptome of the head kidney did not reveal any differential gene expression, unlike the observations in the distal intestine. The present study demonstrated that soybean derivatives could evoke marked changes in intestinal transport mechanisms and metabolic pathways, and these responses are likely to have a significant impact on the intestine of Atlantic salmon. Hence, soybean-induced enteritis in Atlantic salmon is an ideal model to investigate the inflammatory responses at the cellular and molecular levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.