Glycoproteins in animal cells contain a variety of glycan structures that are added co- and/or posttranslationally to proteins. Of over 20 different types of sugar-amino acid linkages known, the two major types are N-glycans (Asn-linked) and O-glycans (Ser/Thr-linked). An abnormal mucin-type O-glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of N-acetyl-D-galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1-O-Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T-synthase) in the Golgi apparatus of cells. Expression of active T-synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T-synthase or Cosmc, or genes affecting other steps of O-glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn-based vaccines and other therapeutic approaches based on Tn expression.
Tumor-associated blood vessels differ from normal vessels and proteins present only on tumor vessels may serve as biomarkers or targets for antiangiogenic therapy in cancer. Comparing the transcriptional profiles of blood vascular endothelium from human invasive bladder cancer with normal bladder tissue, we found that the endothelial cell-specific molecule endocan (ESM1) was highly elevated on tumor vessels. Endocan was associated with filopodia of angiogenic endothelial tip cells in invasive bladder cancer. Notably, endocan expression on tumor vessels correlated strongly with staging and invasiveness, predicting a shorter recurrence-free survival time in noninvasive bladder cancers. Both endocan and VEGF-A levels were higher in plasma of patients with invasive bladder cancer than healthy individuals. Mechanistic investigations in cultured blood vascular endothelial cells or transgenic mice revealed that endocan expression was stimulated by VEGF-A through the phosphorylation and activation of VEGFR-2, which was required to promote cell migration and tube formation by VEGF-A. Taken together, our findings suggest that disrupting endocan interaction with VEGFR-2 or VEGF-A could offer a novel rational strategy to inhibit tumor angiogenesis. Furthermore, they suggest that endocan might serve as a useful biomarker to monitor disease progression and the efficacy of VEGF-A–targeting therapies in patients with bladder cancer. Cancer Res; 73(3); 1097–106. ©2012 AACR.
L-selectin expressed on leukocytes is involved in lym-Binding to an isomeric glycosulfopeptide containing three Tyr-SO 3 residues and a core 1-based O-glycan expressing sLe x was reduced by ϳ90%. All three Tyr-SO 3 residues of GSP-6 are required for high affinity binding to L-selectin. Low affinity binding to mono-and disulfated GSPs is largely independent of the position of the Tyr-SO 3 residues, except for some binding preference for an isomer sulfated on both Tyr-48 and -51. These results demonstrate that L-selectin binds with high affinity to the N-terminal region of PSGL-1 through cooperative interactions with three sulfated tyrosine residues and an appropriately positioned C2-O-sLe x O-glycan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.