Abstract. In this paper, we present a practical attack on the signature scheme SFLASH proposed by Patarin, Goubin and Courtois in 2001 following a design they had introduced in 1998. The attack only needs the public key and requires about one second to forge a signature for any message, after a one-time computation of several minutes. It can be applied to both SFLASH v2 which was accepted by NESSIE, as well as to SFLASH v3 which is a higher security version.
Abstract. HFE is a public key scheme introduced by Patarin in 1996. An HFE public key is a large system of polynomials in many variables over a small finite field. This system results from some secret composition, based on which the owner can solve it to any arbitrary vector. While the security of the cryptosystem relies on the difficulty of solving the public system without the trapdoor information, in 2002 Faugère found experimentally that Gröbner basis computations perform much better on certain HFE instances than on random systems. More specifically, Faugère observed that the regular behaviour of the Gröbner basis computation collapses at a much lower degree than expected for random systems, letting the computation finish much earlier. Accounting for this distinctive property, Faugère and Joux showed in 2003 that mapping HFE systems to some other multivariate ring exhibits the particular algebraic structure of these systems. Nevertheless, they did not offer the actual computation of the degree of regularity of HFE systems. Later, in 2006, Granboulan, Joux and Stern showed an asymptotic upper bound on the degree of regularity of HFE systems over GF (2) using independent results on overdetermined systems of equations. The case of larger ground fields has remained however completely unsolved. In this paper, we exhibit an additional property of HFE systems that is increasingly significant as the size of the ground field grows. Using this property with a standard combinatorial calculation yields an arguably tight numerical bound on the degree of regularity of HFE systems for any parameters.
Abstract. SFLASH is a signature scheme which belongs to a family of multivariate schemes proposed by Patarin et al. in 1998 [9]. The SFLASH scheme itself has been designed in 2001 [8] and has been selected in 2003 by the NESSIE European Consortium [6] as the best known solution for implementation on low cost smart cards. In this paper, we show that slight modifications of the parameters of SFLASH within the general family initially proposed renders the scheme insecure. The attack uses simple linear algebra, and allows to forge a signature for an arbitrary message in a question of minutes for practical parameters, using only the public key. Although SFLASH itself is not amenable to our attack, it is worrying to observe that no rationale was ever offered for this "lucky" choice of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.