Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
The increasing global demand for food and energy production encourages the development of new production strategies focused on sustainability. Often, microbial bioprocesses rely on food or feed competitive feedstocks; hence, there is a trending need for green substrates. Here, we have proven the potential of brown seaweed biomass as microbial feedstock on account of its content of mannitol and the glucose polymer laminarin. Our host, Corynebacterium glutamicum, was engineered to enable access to mannitol as a carbon source through the heterologous expression of the mannitol-specific phosphotransferase system and the mannitol-1-phosphate-5-dehydrogenase from Bacillus subtilis. Overproduction of riboflavin was coupled with mannitol and glucose consumption via constitutive overexpression of the biosynthetic riboflavin operon ribGCAH from C. glutamicum. Brown seaweed extract and brown seaweed hydrolysate from Laminaria hyperborea, containing mannitol and glucose, were used as a carbon source for flask and bioreactor fermentations. In a seaweed-based fed-batch fermentation, the riboflavin final titer, yield, and volumetric productivity values of 1,291.2 mg L−1, 66.1 mg g−1, and 17.2 mg L−1 h−1, respectively, were achieved.
The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L −1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanolbased overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.