Schizophrenia is associated with a broad range of severe and currently pharmacoresistant cognitive deficits. Prior evidence suggests that hypofunction of AMPA-type glutamate receptors (AMPARs) containing the subunit GLUA1, encoded by GRIA1, might be causally related to impairments of selective attention and memory in this disorder, at least in some patients. In order to clarify the roles of GluA1 in distinct cell populations, we investigated behavioural consequences of selective Gria1-knockout in excitatory neurons of subdivisions of the prefrontal cortex and the hippocampus, assessing sustained attention, impulsivity, cognitive flexibility, anxiety, sociability, hyperactivity, and various forms of short-term memory in mice. We found that virally induced reduction of GluA1 across multiple hippocampal subfields impaired spatial working memory. Transgene-mediated ablation of GluA1 from excitatory cells of CA2 impaired short-term memory for conspecifics and objects. Gria1 knockout in CA3 pyramidal cells caused mild impairments of object-related and spatial short-term memory, but appeared to partially increase social interaction and sustained attention and to reduce motor impulsivity. Our data suggest that reduced hippocampal GluA1 expression—as seen in some patients with schizophrenia—may be a central cause particularly for several short-term memory deficits. However, as impulse control and sustained attention actually appeared to improve with GluA1 ablation in CA3, strategies of enhancement of AMPAR signalling likely require a fine balance to be therapeutically effective across the broad symptom spectrum of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.