This paper presents FRACTAL, a hierarchical and reflective component model with sharing. Components in this model can be endowed with arbitrary reflective capabilities, from plain black‐box objects to components that allow a fine‐grained manipulation of their internal structure. The paper describes JULIA, a Java implementation of the model, a small but efficient runtime framework, which relies on a combination of interceptors and mixins for the programming of reflective features of components. The paper presents a qualitative and quantitative evaluation of this implementation, showing that component‐based programming in FRACTAL can be made very efficient. Copyright © 2006 John Wiley & Sons, Ltd.
Modern Byzantine fault-tolerant state machine replication (BFT) protocols involve about 20,000 lines of challenging C++ code encompassing synchronization, networking and cryptography. They are notoriously difficult to develop, test and prove. We present a new abstraction to simplify these tasks. We treat a BFT protocol as a composition of instances of our abstraction. Each instance is developed and analyzed independently.To illustrate our approach, we first show how our abstraction can be used to obtain the benefits of a state-ofthe-art BFT protocol with much less pain. Namely, we develop AZyzzyva, a new protocol that mimics the behavior of Zyzzyva in best-case situations (for which Zyzzyva was optimized) using less than 24% of the actual code of Zyzzyva. To cover worst-case situations, our abstraction enables to use in AZyzzyva any existing BFT protocol, typically, a classical one like PBFT which has been tested and proved correct.We then present Aliph, a new BFT protocol that outperforms previous BFT protocols both in terms of latency (by up to 30%) and throughput (by up to 360%). The development of Aliph required two new instances of our abstraction. Each instance contains less than 25% of the code needed to develop state-of-the-art BFT protocols.
Byzantine Fault Tolerant state machine replication (BFT) protocols are replication protocols that tolerate arbitrary faults of a fraction of the replicas. Although significant efforts have been recently made, existing BFT protocols do not provide acceptable performance when faults occur. As we show in this paper, this comes from the fact that all existing BFT protocols targeting high throughput use a special replica, called the primary, which indicates to other replicas the order in which requests should be processed. This primary can be smartly malicious and degrade the performance of the system without being detected by correct replicas. In this paper, we propose a new approach, called RBFT for Redundant-BFT: we execute multiple instances of the same BFT protocol, each with a primary replica executing on a different machine. All the instances order the requests, but only the requests ordered by one of the instances, called the master instance, are actually executed. The performance of the different instances is closely monitored, in order to check that the master instance provides adequate performance. If that is not the case, the primary replica of the master instance is considered malicious and replaced. We implemented RBFT and compared its performance to that of other existing robust protocols. Our evaluation shows that RBFT achieves similar performance as the most robust protocols when there is no failure and that, under faults, its maximum performance degradation is about 3%, whereas it is at least equal to 78% for existing protocols.
We present Abstract (ABortable STate mAChine replicaTion), a new abstraction for designing and reconfiguring generalized replicated state machines that are, unlike traditional state machines, allowed to abort executing a client's request if "something goes wrong."Abstract can be used to considerably simplify the incremental development of efficient Byzantine faulttolerant state machine replication (BFT) protocols that are notorious for being difficult to develop. In short, we treat a BFT protocol as a composition of Abstract instances. Each instance is developed and analyzed independently and optimized for specific system conditions. We illustrate the power of Abstract through several interesting examples.We first show how Abstract can yield benefits of a state-of-the-art BFT protocol in a less painful and errorprone manner. Namely, we develop AZyzzyva, a new protocol that mimics the celebrated best-case behavior of Zyzzyva using less than 35% of the Zyzzyva code. To cover worst-case situations, our abstraction enables one to use in AZyzzyva any existing BFT protocol.We then present Aliph, a new BFT protocol that outperforms previous BFT protocols in terms of both latency (by up to 360%) and throughput (by up to 30%). Finally, we present R-Aliph, an implementation of Aliph that is robust, that is, whose performance degrades gracefully in the presence of Byzantine replicas and Byzantine clients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.