Spinal cord oligodendrocytes originate in the ventricular zone and subsequently migrate to white matter, stop, proliferate, and differentiate. Here we demonstrate a role for the chemokine CXCL1 and its receptor CXCR2 in patterning the developing spinal cord. Signaling through CXCR2, CXCL1 inhibited oligodendrocyte precursor migration. The migrational arrest was rapid, reversible, concentration dependent, and reflected enhanced cell/substrate interactions. White matter expression of CXCL1 was temporo-spatially regulated. Developing CXCR2 null spinal cords contained reduced oligodendrocytes, abnormally concentrated at the periphery. In slice preparations, CXCL1 inhibited embryonic oligodendrocyte precursor migration, and widespread dispersal of postnatal precursors occurred in the absence of CXCR2 signaling. These data suggest that population of presumptive white matter by oligodendrocyte precursors is dependent on localized expression of CXCL1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.