Thiazolidinediones are a new class of antidiabetic agent that improve insulin sensitivity and reduce plasma glucose and blood pressure in subjects with type 2 diabetes. Although these agents can bind and activate an orphan nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARgamma), there is no direct evidence to conclusively implicate this receptor in the regulation of mammalian glucose homeostasis. Here we report two different heterozygous mutations in the ligand-binding domain of PPARgamma in three subjects with severe insulin resistance. In the PPARgamma crystal structure, the mutations destabilize helix 12 which mediates transactivation. Consistent with this, both receptor mutants are markedly transcriptionally impaired and, moreover, are able to inhibit the action of coexpressed wild-type PPARgamma in a dominant negative manner. In addition to insulin resistance, all three subjects developed type 2 diabetes mellitus and hypertension at an unusually early age. Our findings represent the first germline loss-of-function mutations in PPARgamma and provide compelling genetic evidence that this receptor is important in the control of insulin sensitivity, glucose homeostasis and blood pressure in man.
PGC1 alpha is a co-activator involved in adaptive thermogenesis, fatty-acid oxidation and gluconeogenesis. We describe the identification of several isoforms of a new human PGC1 alpha homologue, cloned independently and named PGC1 beta. The human PGC1 beta gene is localized to chromosome 5, has 13 exons and spans more than 78 kb. Two different 5' and 3' ends due to differential splicing were identified by rapid amplification of cDNA ends PCR and screening of human cDNA libraries. We show that PGC1 beta variants in humans, mice and rats are expressed predominantly in heart, brown adipose tissue, brain and skeletal muscle. PGC1 beta expression, unlike PGC1 alpha, is not up-regulated in brown adipose tissue in response to cold or obesity. Fasting experiments showed that PGC1 alpha, but not PGC1 beta, is induced in liver and this suggests that only PGC1 alpha is involved in the hepatic gluconeogenesis. No changes in PGC1 beta gene expression were observed associated with exercise. Human PGC1 beta-1a and -2a isoforms localized to the cell nucleus and, specifically, the isoform PGC1 beta-1a co-activated peroxisome-proliferator-activated receptor-gamma, -alpha and the thyroid hormone receptor beta1. Finally, we show that ectopic expression PGC1 beta leads to increased mitochondrial number and basal oxygen consumption. These results suggest that PGC1 beta may play a role in constitutive adrenergic-independent mitochondrial biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.