FEM studies were made on a zirconia dental bridge of 4 elements with supports on 2.4 and 2.7, and edentation on 2.5 and 2.6. Appling a compressive force of 350N on Z direction, quite normal for mastication, was analyzed the behavior of the dental bridge. Zirconia, although having a high mechanical strength, is fragile when rotation or bending movements occur. The analysis reveals some bridge deficiencies, which may be due either to inaccuracies in the prosthetic abutment construction (especially in relation to their inclination), to the technique of realization or to insufficient dental support. In our study, the most vulnerable elements are the crowns on teeth 2.4 and 2.7. Finite element analysis, highlighting possible structural and design deficiencies, may be a solution to improve dental bridges. The only disadvantage of the finite element analysis that was performed before the actual restoration is related to the fact that performing the simulations involves a time-consuming phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.