SUMMARY Mutation of surface residues to charged amino acids increases resistance to aggregation and can enable reversible unfolding. We have developed a protocol using the Rosetta computational design package that “supercharges” proteins while considering the energetic implications of each mutation. Using a homology model, a single-chain variable fragment antibody was designed that has a markedly enhanced resistance to thermal inactivation and displays an unanticipated ≈30-fold improvement in affinity. Such supercharged antibodies should prove useful for assays in resource-limited settings and for developing reagents with improved shelf lives.
Most basophilic serine/threonine kinases preferentially phosphorylate substrates with Arg at P؊3 but vary greatly in additional strong preference for Arg at P؊2 or P؊5. The structural basis for P؊2 or P؊5 preference is known for two AGC kinases (family of protein kinases A, G, and C) in which it is mediated by a single pair of acidic residues (PEN؉1 and YEM؉1). We sought a general understanding of P؊2 and P؊5 Arg preference. The strength of Arg preference at each position was assessed in 15 kinases using a new degenerate peptide library approach. Strong P؊2 or P؊5 Arg preference occurred not only in AGC kinases (7 of 8 studied) but also in calmodulin-dependent protein kinase (CAMK, 1 of 3) and Ste20 (STE) kinases (2 of 4). Analysis of sequence conservation demonstrated almost perfect correlation between (a) strong P؊2 or P؊5 Arg preference and (b) acidic residues at both PEN؉1 and YEM؉1. Mutation of two kinases (PKC-and p21-activated kinase 1 (PAK1)) confirmed critical roles of both PEN؉1 and YEM؉1 residues in determining strong R-2 Arg preference. PAK kinases were unique in having exceptionally strong Arg preference at P؊2 but lacking strong Arg preference at P؊3. Preference for Arg at P؊2 was so critical to PAK recognition that PAK1 activity was virtually eliminated by mutating the PEN؉1 or YEM؉1 residues. The fact that this specific pair of acidic residues has been repeatedly and exclusively used by evolution for conferring strong Arg preference at two different substrate positions in three different kinase families implies it is uniquely well suited to mediate sufficiently good substrate binding without unduly restricting product release.
The programmability and replicability of RNA and DNA have respectively enabled the design and selection of a number of allosteric ribozymes and deoxyribozymes. These catalysts have been adapted to function as signal transducers in biosensors and biochemical reaction networks both in vitro and in vivo. However, allosteric control of nucleic acid catalysts is currently limited by the fact that one molecule of effector (input) generally regulates at most one molecule of ribozyme or deoxyribozyme (output). In consequence, allosteric control is usually inefficient when the concentration of input molecules is low. In contrast, catalytic regulation of protein enzymes, as in protein phosphorylation cascades, generally allows one input molecule (e.g., one kinase molecule) to regulate multiple output molecules (e.g., kinase substrates). Achieving such catalytic signal amplification would also be of great utility for nucleic acid circuits. Here we show that allosteric regulation of nucleic acid enzymes can be coupled to signal amplification in an entropy-driven DNA circuit. In this circuit, kinetically trapped DNA logic gates are triggered by a specific sequence, and upon execution generate a peroxidase deoxyribozyme that converts a colorless substrate (ABTS) into a green product (ABTS •+). This scheme provides a new paradigm for the design of enzyme-free biosensors for point-of-care diagnostics. FindingsA variety of functional nucleic acids have been engineered over the past two decades, including not only simple binding elements (aptamers [1,2]) and catalysts (ribozymes [3] and deoxyribozymes [4]), but also more 'intelligent' molecular parts, such as aptamer beacons and allosteric ribozymes that can sense biomolecules [5,6], process molecular information [7,8], and regulate biochemical systems [9]. However, most regulatory nucleic acid elements are based on allosteric control, which has a fundamental limitation: one input molecule generally yields only one output molecule. Such stoichiometric or sub-stoichiometric regulation is often insufficient for effective metabolic regulation or diagnostic signal transduction, especially when the concentrations of input molecules are low.In contrast, natural catalytic cascades, such as the phosphorylation of proteins by kinases, readily amplify low input signals. Although in principle ribozymes and deoxyribozymes could participate in similar cascades as catalysts [10][11][12], no generalizable method for implementing such cascades has yet been established. On the other hand, DNA and RNA can catalyze chemical reactions not only by forming intricate tertiary structures, but also by simply forming Watson-Crick base pairs. In fact, by serving as a hybridization template, DNA can control and catalyze a wide range of chemical reactions [13], some of which can yield products capable of regulating downstream reactions. More recently, Zhang and coworkers have designed a scheme for highly efficient, enzyme-free, entropy-driven catalytic reactions that relies only on the dynamic hybrid...
This unit describes the selection of aptamers from a single-stranded RNA pool that bind to small molecule targets. Aptamers generated by this type of selection experiment can potentially function as receptors for small molecules in numerous applications, including medical diagnostics, therapeutics, and environmental monitoring. This unit describes two modes of selection, one by column filtration and one by batch selection.
We have developed a self-reporting PCR system for visual colorimetric gene detection and distinction of single nucleotide polymorphisms (SNP). Amplification is performed using target-specific primers modified with a 5’-end tail that is complementary to a G-quadruplex deoxyribozyme-forming sequence. At end-point G-quadruplexes are forced to fold from PCR-generated duplex DNA and then used to colorimetrically report the successful occurrence of PCR by assaying their peroxidase activity using a chromogenic substrate. Furthermore, primer design considerations for the G-quadruplex-generating PCR system have allowed us to visually distinguish SNPs associated with Mycobacterium tuberculosis drug resistance alleles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.