In this paper, we propose a novel semantic segmentation-based stereo reconstruction method that can keep up with the accuracy of the state-of-the art approaches while running in real time. The solution follows the classic stereo pipeline, each step in the stereo workflow being enhanced by additional information from semantic segmentation. Therefore, we introduce several improvements to computation, aggregation, and optimization by adapting existing techniques to integrate additional surface information given by each semantic class. For the cost computation and optimization steps, we propose new genetic algorithms that can incrementally adjust the parameters for better solutions. Furthermore, we propose a new postprocessing edge-aware filtering technique relying on an improved convolutional neural network (CNN) architecture for disparity refinement. We obtain the competitive results at 30 frames/s, including segmentation.
Aerial scene understanding systems face stringent payload restrictions and must often rely on monocular depth estimation for modelling scene geometry, which is an inherently ill-posed problem. Moreover, obtaining accurate ground truth data required by learning-based methods raises significant additional challenges in the aerial domain. Self-supervised approaches can bypass this problem, at the cost of providing only up-toscale results. Similarly, recent supervised solutions which make good progress towards zero-shot generalization also provide only relative depth values. This work presents TanDepth, a practical, online scale recovery method for obtaining metric depth results from relative estimations at inference-time, irrespective of the type of model generating them. Tailored for Unmanned Aerial Vehicle (UAV) applications, our method leverages sparse measurements from Global Digital Elevation Models (GDEM) by projecting them to the camera view using extrinsic and intrinsic information. An adaptation to the Cloth Simulation Filter is presented, which allows selecting ground points from the estimated depth map to then correlate with the projected reference points. We evaluate and compare our method against alternate scaling methods adapted for UAVs, on a variety of real-world scenes. Considering the limited availability of data for this domain, we construct and release a comprehensive, depth-focused extension to the popular UAVid dataset to further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.