This paper presents implementation and testing of an elastic strain powered wireless sensing system for energyautonomous applications. The system harvests strain energy from a vibrating structure and convert it into usable electrical energy for powering sensors and a wireless communication node. Typical in-flight vibration frequency and strain levels on the bottom side of the aircraft wing's root were investigated for testing the performance of the system. Major concerns of the implemented system are the amount of harvested power, in the usable range of milliwatts, and the low power consumption energy-flow management for data sensing and transmitting. Such results arise from the use of flexible piezoelectric macrofiber composite (MFC) bonded as energy generator to both an aluminum and a composite substrate, and from the integration of a new Energy-Aware Interface (EAI). The harvested power is between 0.5-12 mW under low and non-resonant vibrations of 2.5-10 Hz and 480-1170 μstrain peak-to-peak. The waiting time between two consecutive transmissions was measured around 0.4 s under 1170 μstrain peak-to-peak excitation at 10 Hz. Such achievement shows strong capability to approach self-powered continuous monitoring. The system has potential of being used to harvest strain energy from the vibrations of aircraft in active service for powering an on-board wireless sensing node for Structural Health Monitoring (SHM).
This paper presents the design and implementation of a wireless sensor communication system with a low power consumption for integration with energy harvesting technology, that can be employed in energy autonomous wireless sensor communication applications. The design and implementation focus on three levels: hardware, software and data transmission. The resulted system is able to satisfy all the theoretical and practical requirements in order to be included in a wireless sensor structure that is able to give the device self-powered autonomy, due to a smart inter-correlated management of the energy resources.
Efficient management through monitoring of Li-ion batteries is critical to the progress of electro-mobility and energy storage globally, since the technology can be hazardous if pushed beyond its safety boundaries. Battery management systems (BMSs) are being actively improved to reduce size, weight, and cost while increasing their capabilities. Using power line communication, wireless monitoring, or hybrid data links are one of the most advanced research directions today. In this work, we propose the use of radio frequency (RF) transceivers as a communication unit that can deliver both wired and wireless services, through their superior analog and digital signal processing capability compared to PLC technology. To validate our approach computational simulation and empirical evaluation was conducted to examine the possibility of using RF transceivers on a direct current (DC) bus for wired BMS. A key advantage of this study is that it proposes a flexible and tested system for communication across a variety of network scenarios, where wireless data links over disrupted connections may be enabled by using this technology in short-range wired modes. This investigation demonstrates that the IEEE 802.15.4-compliant transceivers with operating frequencies of 868 MHz and 2.4 GHz can establish stable data links on a DC bus via capacitive coupling at high data rates.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.