Additive manufacturing (AM) is considered the latest technology that creates breakthrough innovations and addresses complex medical problems. This is clearly demonstrated by the promising results obtained in regenerative medicine, diagnosis, implants, artificial tissues and organs. This paper provides a basic understanding of the fundamentals of 3D/4D printing along with bioprinting processes. We are briefly discussing about the main printing systems including stereolithography, inkjet 3D printing, extrusion, laser-assisted printing, selective laser melting and Poly-Jet printing. The basic requirements for the selection of successful inks based on polymers, polymer blends, and composites are described. Furthermore, the on-going transition from 3D to 4D printing is highlighted with emphasis on the newest applications in the medical area. Also, a glimpse into the future possibilities and benefits provided by machine learning in the additive manufacturing field is emphasized. Machine learning can improve printing efficiency by using generative design and testing in the pre-fabrication stage. Finally, important limitations and prospects are identified. Within the next few years, AM is set to become an important component in patient-specific medical technologies.
The article reviews the possibilities of encapsulating essential oils EOs, due to their multiple benefits, controlled release, and in order to protect them from environmental conditions. Thus, we present the natural polymers and the synthetic macromolecular chains that are commonly used as networks for embedding EOs, owing to their biodegradability and biocompatibility, interdependent encapsulation methods, and potential applicability of bioactive blend structures. The possibilities of using artificial intelligence to evaluate the bioactivity of EOs—in direct correlation with their chemical constitutions and structures, in order to avoid complex laboratory analyses, to save money and time, and to enhance the final consistency of the products—are also presented.
The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/mabi.201900187. Nanogels (Nano)gels from macromolecular compounds-natural, synthetic, or a combination thereof, suitable crosslinkers-and conferred characteristicssuch as degradability, size, charge, amphiphilicity, responsiveness, and softness-are capable of responding to the challenges imposed by bioengineering applications. Polysaccharide-based gels have received particular attention in this field. This review addresses recent advancement in the use of (nano)gel structures prepared only from compounds based on gellan gum, heparin, chondroitin sulfate, carrageenan, guar gum, galactose, or agarose, which represent an important part of the special class of natural polymers, the polysaccharides. Also, future trends are taken into discussion regarding the (nano)gels' use in biomedical applications such as biomimetics, biosensors, artificial muscles, and chemical separations in relation with their ability to be used as a vehicle for various biomolecules due to their physicochemical properties, biocompatibility, and biodegradability.
The study presents the achievement of a new assembly with antioxidant behaviour based on a copolymacrolactone structure that encapsulates erythritol (Eryt). Poly(ethylene brassylate-co-squaric acid) (PEBSA) was synthesised in environmentally friendly conditions, respectively, through a process in suspension in water by opening the cycle of ethylene brassylate macrolactone, followed by condensation with squaric acid. The compound synthesised in suspension was characterised by comparison with the polymer obtained by polymerisation in solution. The investigations revealed that, with the exception of the molecular masses, the compounds generated by the two synthetic procedures present similar properties, including good thermal stability, with a Tpeak of 456 °C, and the capacity for network formation. In addition, the investigation by dynamic light scattering techniques evidenced a mean diameter for PEBSA particles of around 596 nm and a zeta potential of −25 mV, which attests to their stability. The bio-based copolymacrolactone was used as a matrix for erythritol encapsulation. The new PEBSA–Eryt compound presented an increased sorption/desorption process, compared with the PEBSA matrix, and a crystalline morphology confirmed by X-ray diffraction analysis. The bioactive compound was also characterised in terms of its biocompatibility and antioxidant behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.