Recent advances in organic chemistry and materials chemistry have enabled the porosity of new materials to be accurately controlled on the nanometer scale. In this context, metal–organic frameworks (MOFs) have rapidly become one of the most attractive classes of solid supports currently under investigation in heterogeneous catalysis. Their unprecedented degree of tunability gives MOFs the chance to succeed where others have failed. The past decade has witnessed an exponential growth in the complexity of new structures. MOFs with a variety of topologies and pore sizes show excellent stability across wide ranges of pH and temperature. Even the controlled insertion of defects, to alter the MOF’s properties in a predictable manner, has become commonplace. However, research on catalysis with MOFs has been sluggish in catching up with modern trends in organic chemistry. Relevant issues such as enantioselective processes, C–H activation, or olefin metathesis are still rarely discussed. In this Perspective, we highlight meritorious examples that tackle important issues from contemporary organic synthesis, and that provide a fair comparison with existing catalysts. Some of these MOF catalysts already outcompete state-of-the-art homogeneous solutions. For others, improvements may still be required, but they have merit in aiming for the bigger challenge. Furthermore, we also identify some important areas where MOFs are likely to make a difference, by addressing currently unmet needs in catalysis instead of trying to outcompete homogeneous catalysts in areas where they excel. Finally, we strongly advocate for rational design of MOF catalysts, founded on a deep mechanistic understanding of the events taking place inside the pore.
Palladium nanoparticles have been immobilized into an amino-functionalized metal–organic framework (MOF), MIL-101Cr-NH 2 , to form Pd@MIL-101Cr-NH 2 . Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16 wt %Pd@MIL-101Cr-NH 2 ). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N 2 -sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH 2 , electron tomography was employed to reconstruct the 3D volume of 8 wt %Pd@MIL-101Cr-NH 2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki–Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt % palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol %). The material can be recycled at least 10 times without alteration of its catalytic properties.
A series of highly porous isoreticular lanthanidebased metal−organic frameworks (LnMOFs) denoted as SUMOF-7I to SUMOF-7IV (SU = Stockholm University; Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) have been synthesized using tritopic carboxylates as the organic linkers. The SUMOF-7 materials display one-dimensional pseudohexagonal channels with the pore diameter gradually enlarged from 8.4 to 23.9 Å, as a result of increasing sizes of the organic linkers. The structures have been solved by single crystal X-ray diffraction or rotation electron diffraction (RED) combined with powder X-ray diffraction (PXRD). The SUMOF-7 materials exhibit robust architectures with permanent porosity. More importantly, they exhibit exceptionally high thermal and chemical stability. We show that, by inclusion of organic dye molecules, the luminescence properties of the MOFs can be elaborated and modulated, leading to promising applications in sensing and optics.
The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (H NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.