The binding of ethanol to rat liver microsomes is shown to be saturable at clinically relevant ethanol concentrations, whereas this effect is not observed in extracted microsomal phospholipids. Brief exposure of the microsomes to heat abolishes saturable ethanol binding. Equilibrium binding data analysis, although only approximate in this context, suggests the presence of at least two groups of specific sites: high capacity sites with affinities near the pharmacological range and low capacity sites at lesser levels. The results indicate that the specificity of ethanol for tissue is considerably greater than previously recognized.
Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.