The effect of cation size on the rate and energy of electron transfer to [(M(+))(acceptor)] ion pairs is addressed by assigning key physicochemical properties (reactivity, relative energy, structure, and size) to an isoelectronic series of well-defined M(+)-acceptor pairs, M(+) = Li(+), Na(+), K(+). A 1e(-) acceptor anion, alpha-SiV(V)W(11)O(40)(5-) (1, a polyoxometalate of the Keggin structural class), was used in the 2e(-) oxidation of an organic electron donor, 3,3',5,5'-tetra-tert-butylbiphenyl-4,4'-diol (BPH(2)), to 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) in acetate-buffered 2:3 (v/v) H(2)O/t-BuOH at 60 degrees C (2 equiv of 1 are reduced by 1e(-) each to 1(red), alpha-SiV(IV)W(11)O(40)(6-)). Before an attempt was made to address the role of cation size, the mechanism and conditions necessary for kinetically well behaved electron transfer from BPH(2) to 1 were rigorously established by using GC-MS, (1)H, (7)Li, and (51)V NMR, and UV-vis spectroscopy. At constant [Li(+)] and [H(+)], the reaction rate is first order in [BPH(2)] and in [1] and zeroth order in [1(red)] and in [acetate] (base) and is independent of ionic strength, mu. The dependence of the reaction rate on [H(+)] is a function of the constant, K(a)1, for acid dissociation of BPH(2) to BPH(-) and H(+). Temperature dependence data provided activation parameters of DeltaH = 8.5 +/- 1.4 kcal mol(-1) and DeltaS = -39 +/- 5 cal mol(-1) K(-1). No evidence of preassociation between BPH(2) and 1 was observed by combined (1)H and (51)V NMR studies, while pH (pD)-dependent deuterium kinetic isotope data indicated that the O-H bond in BPH(2) remains intact during rate-limiting electron transfer from BPH(2) and 1. The formation of 1:1 ion pairs [(M(+))(SiVW(11)O(40)(5-))](4-) (M(+)1, M(+) = Li(+), Na(+), K(+)) was demonstrated, and the thermodynamic constants, K(M)(1), and rate constants, k(M)(1), associated with the formation and reactivity of each M(+)1 ion pair with BPH(2) were calculated by simultaneous nonlinear fitting of kinetic data (obtained by using all three cations) to an equation describing the rectangular hyperbolic functional dependence of k(obs) values on [M(+)]. Constants, K(M)(1)red, associated with the formation of 1:1 ion pairs between M(+) and 1(red) were obtained by using K(M)(1) values (from k(obs) data) to simultaneously fit reduction potential (E(1/2)) values (from cyclic voltammetry) of solutions of 1 containing varying concentrations of all three cations to a Nernstian equation describing the dependence of E(1/2) values on the ratio of thermodynamic constants K(M)(1) and K(M)(1)red. Formation constants, K(M)(1), and K(M)(1)red, and rate constants, k(M)(1), all increase with the size of M(+) in the order K(Li)(1) = 21 < K(Na)(1) = 54 < K(K)(1) = 65 M(-1), K(Li)(1)red = 130 < K(Na)(1)red = 570 < K(K)(1)red = 2000 M(-1), and k(Li)(1) = 0.065 < k(Na)(1) = 0.137 < k(K)(1) = 0.225 M(-1) s(-1). Changes in the chemical shifts of (7)Li NMR signals as functions of [Li(5)1] and [Li(6)1(red)] were used to establish that the complexes M(+...
The previously unknown titanium(IV)-containing mu-hydroxo dimeric heteropolytungstate (Bu4N)7[(PTiW11O39)2-OH] (TBA salt of H1) has been synthesized, starting from H5PTiW11O40, and characterized by elemental analysis, multinuclear (31P, 17O, 183W) NMR, IR, FAB-MS, cyclic voltammetry, and potentiometric titration. 31P NMR reveals that H1 (delta -12.76) readily forms in MeCN from the Keggin monomer (POM), PTiW11O40(5-) (2, delta -13.34), upon the addition of 1.5 equiv of H+, via the protonated species, P(TiOH)W11O39(4-) (H2, delta -13.44). The ratio of H1, 2, and H2, which are present in equilibrium in MeCN solution at 25 degrees C, depends on the concentration of both H+ and H2O. The Ti-O-Ti linkage readily reacts with nucleophilic reagents, such as H2O and ROH, to yield monomeric Keggin derivatives. mu-Hydroxo dimer H1 shows higher catalytic activity than 2 for thioether oxidation by hydrogen peroxide in acetonitrile. The reaction proceeds readily at room temperature and affords the corresponding sulfoxide and sulfone in ca. quantitative yield. The addition of H2O2 to H1 or H2 results in the formation of a peroxo complex, most likely the hydroperoxo complex P(TiOOH)W11O39(4-) (I), which has 31P NMR resonance at -12.43 ppm. The rate of the formation of I is higher from H2 than from H1. When H1 is used as a catalyst precursor, the rates of the thioether oxidation and peroxo complex formation increase with increasing H2O concentration, which favors the cleavage of H1 to H2. H2O2 in MeCN slowly converts 2 to another peroxotitanium complex, P(TiO2)W11O39(5-) (II), which has 31P NMR resonance at -12.98 ppm. Peroxo complexes I and II differ in their protonation state and interconvert fast on the 31P NMR time scale. Addition of 1 equiv of H+ completely converts II to I, while 1 equiv of OH- completely converts I to II. 31P NMR confirms that I is stable under turnover conditions (thioether, H2O2, MeCN). Contrary to two-phase systems such as dichloroethane/aqueous H2O2, no products resulting from the destruction of the Keggin POM were detected in MeCN in the presence of H2O2 (a 500-fold molar excess). The reactivity of I, generated in situ from II by adding 1 equiv of H+, toward organic sulfides under stoichiometric conditions was confirmed using both 31P NMR and UV-vis spectroscopy. This is a rare demonstration of the direct stoichiometric oxidation of an organic substrate by a titanium peroxo complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.