Development of QED cascades in a standing electromagnetic wave for circular and linear polarizations is simulated numerically with a 3D PIC-MC code. It is demonstrated that for the same laser energy the number of particles produced in a circularly polarized field is greater than in a linearly polarized field, though the acquiring mean energy per particle is larger in the latter case. The qualitative model of laser-assisted QED cascades is extended by including the effect of polarization of the field. It turns out that cascade dynamics is notably more complicated in the case of linearly polarized field, where separation into the qualitatively different "electric" and "magnetic" regions (where the electric field is stronger than the magnetic field and vice versa) becomes essential. In the "electric" regions acceleration is suppressed and moreover the high-energy electrons are even getting cooled by photon emission. The volumes of the "electric" and "magnetic" regions evolve periodically in time, and so does the cascade growth rate. In contrast to the linear polarization the charged particles can be accelerated by circularly polarized wave even in "magnetic region". The "electric" and "magnetic" regions do not evolve in time and cascade growth rate almost does not depend on time for circular polarization.
We study the dynamics of 2+1 dimensional theories with N = 1 supersymmetry. In these theories the supersymmetric ground states behave discontinuously at codimension one walls in the space of couplings, with new vacua coming in from infinity in field space. We show that the dynamics near these walls is calculable: the two-loop effective potential yields exact results about the ground states near the walls. Far away from the walls the ground states can be inferred by decoupling arguments. In this way, we are able to follow the ground states of N = 1 theories in 2+1 dimensions and construct the infrared phases of these theories. We study two examples in detail: Adjoint SQCD and SQCD with one fundamental quark. In Adjoint QCD we show that for sufficiently small Chern-Simons level the theory has a non-perturbative metastable supersymmetry-breaking ground state. We also briefly discuss the critical points of this theory. For SQCD with one quark we establish an infrared duality between a U(N) gauge theory and an SU(N) gauge theory. The duality crucially involves the vacua that appear from infinity near the walls.
We study BPS domain walls in four-dimensional N = 1 massive SQCD with gauge group SU (N ) and F < N flavors. We propose a class of threedimensional Chern-Simons-matter theories to describe the effective dynamics on the walls. Our proposal passes several checks, including the exact matching between its vacua and the solutions to the four-dimensional BPS domain wall equations, that we solve in the small mass regime. As the flavor mass is varied, domain walls undergo a second-order phase transition, where multiple vacua coalesce into a single one. For special values of the parameters, the phase transition exhibits supersymmetry enhancement. Our proposal includes and extends previous results in the literature, providing a complete picture of BPS domain walls for F < N massive SQCD. A similar picture holds also for SQCD with gauge group Sp(N ) and F < N + 1 flavors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.