A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-nineties, SIESTA's flexibility, efficiency and free distribution has given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of SIESTA combines finite-support pseudoatomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here we describe the more recent implementations on top of that core scheme, which include: full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, DFT+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, densityfunctional perturbation theory, efficient Van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as WANNIER90 and the second-principles modelling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and various postprocessing utilities. SIESTA has also been a) Electronic mail:
The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of the AiiDA infrastructure.
Description of elasticity of iron at the ultrahigh pressures is a challenging task for physics, with a potential strong impact on other branches of science. In the present work, we calculate the elastic properties of hcp iron in the pressure range of 50-340 GPa beyond the linear elasticity approximation, conventionally assumed in theoretical studies. We define the higher order elastic constants and present expressions for the long-wave acoustic modes Grüneisen parameters of a compressed hcp crystal. We obtain the second and third order elastic constants of the hcp Fe in the considered pressure interval, as well as its Grüneisen parameters for the highsymmetry directions. The latter are directly compared with the Grüneisen parameters derived from the volume dependences of the vibrational frequencies calculated in the quasiharmonic approximation. The obtained results are used for the stability analysis of the hcp phase of iron at high pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.