This study examined psychological development in 138 children at the age of 6-7 and 10-11 years, who had suffered prenatal radiation exposure at the time of the Chernobyl accident in 1986. These children were compared to a control group of 122 children of the same age from noncontaminated areas of Belarus. The examination included neurological and psychiatric examination, intellectual assessment, and clinical psychological investigation of parents as well as the estimation of thyroid exposure in utero. The exposed group manifested a relative increase in psychological impairment compared with the control group, with increased prevalence in cases of specific developmental speech-language disorders (18.1% vs. 8.2% at 6-7 years; 10.1% vs. 3.3% at 10-11 years) and emotional disorders (20.3% vs. 7.4% at 6-7 years; 18.1 vs. 7.4% at 10-11 years). The mean IQ of the exposed group was lower than that of the control group, and there were more cases of borderline IQ (IQ = 70-79) (15.9% vs. 5.7% at 6-7 years; and 10.1% vs. 3.3% at 10-11 years). The mean value of thyroid doses from 131I 0.4 Gy was estimated for children exposed in utero. No correlation was found between individual thyroid doses and IQ at age 6-7 years or 10-11 years. We notice a positive moderate correlation between IQ of children and the educational level of their parents. There was a moderate correlation between high personal anxiety in parents and emotional disorders in children. We conclude that a significant role in the genesis of borderline intellectual functioning, specific developmental disorders of speech, language and scholastic skills, as well as emotional disorders in the exposed group of children was played by unfavourable social-psychological and social-cultural factors such as a low educational level of parents, the break of microsocial contacts, and adaptational difficulties, which appear following the evacuation and relocation from the contaminated areas.
Thyroid doses from intake of radioiodine isotopes (131I, 132Te+132I, and 133I) and associated uncertainties were revised for the 13,204 Ukrainian-American cohort members exposed in childhood and adolescence to fallout from the Chornobyl nuclear power plant accident. The main changes related to the revision of the 131I thyroid activity measured in cohort members, the use of thyroid-mass values specific to the Ukrainian population, and the revision of the 131I ground deposition densities in Ukraine. Uncertainties in doses were assessed considering shared and unshared errors in the parameters of the dosimetry model. Using a Monte-Carlo simulation procedure, 1,000 individual stochastic thyroid doses were calculated for each cohort member. The arithmetic mean of thyroid doses from intake of 131I, 132Te+132I, and 133I for the entire cohort was 0.60 Gy (median = 0.22 Gy). For 9,474 subjects (71.6% of the total), the thyroid doses were less than 0.5 Gy. Thyroid doses for 42 cohort members (0.3% of the total) exceeded 10 Gy while the highest dose was 35 Gy. Intake of 131I contributed around 95% to internal thyroid exposure from radioiodine isotopes. The geometric standard deviation of individual stochastic thyroid doses varied among cohort members from 1.4 to 4.3 with an arithmetic mean of 1.6 and a median of 1.4. It was shown that the contribution of shared errors to the dose uncertainty was small. The revised thyroid doses resulted, in average, in around 40% decrease for cohort members from Zhytomyr Oblast and an increase of around 24% and 35% for the cohort members from Kyiv and Chernihiv Oblast, respectively. Arithmetic mean of TD20 doses for the cohort was around 8% less than that estimated in TD10, 0.60 Gy vs. 0.65 Gy, respectively; however, global median of TD20 doses somewhat increased compared to TD10: 0.22 Gy vs. 0.19 Gy, respectively. The difference between TD10 and TD20 was mainly due to a revision of the individual 131I thyroid activity measured in the cohort members.
This study revised the thyroid doses for 2582 Ukrainian in utero cohort members exposed to Chornobyl fallout (the Ukrainian in utero cohort) based on revision of: (i) 131I thyroid activity measured in the Ukrainian population, (ii) thyroid dosimetry system for entire Ukraine, and (iii) 131I ground deposition densities in Ukraine. Other major improvements included: (i) assessment of uncertainties in the thyroid doses considering shared and unshared error, and (ii) accounting for intake of short-lived radioisotopes of tellurium and iodine (132Te+132I and 133I). Intake of 131I was the major pathway for thyroid exposure, its median contribution to the thyroid dose was 97.4%. The mean prenatal and postnatal thyroid dose from 131I was 87 mGy (median = 17 mGy), higher than previous deterministic dose of 72 mGy (median = 12 mGy). For 39 individuals (1.5%) the dose exceeded 1.0 Gy, while the highest dose among the cohort members was 2.7 Gy. The geometric standard deviation (GSD) of 1000 individual stochastic doses varied from 1.9 to 5.2 with a mean of 3.1 and a median of 3.2. The lowest uncertainty (mean GSD = 2.3, median GSD = 2.2) was found for the subjects whose mothers were measured for 131I thyroid activity, while for individuals, whose mothers were not measured, the mean and median GSDs were 3.4. Uncertainties in thyroid doses were driven by shared errors associated with the parameters of the ecological model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.