At the end of 2019, a highly contagious infection began its ominous conquest of the world. It was soon discovered that the disease was caused by a novel coronavirus designated as SARS-CoV-2, and the disease was thus abbreviated to COVID-19 (COVID). The global medical community has directed its efforts not only to find effective therapies against the deadly pathogen but also to combat the concomitant complications. Two of the most common respiratory manifestations of COVID are a significant reduction in the diffusing capacity of the lungs (DLCO) and the associated pulmonary interstitial damage. One year after moderate COVID, the incidence rate of impaired DLCO and persistent lung damage still exceeds 30%, and one-third of the patients have severe DLCO impairment and fibrotic lung damage. The persistent respiratory complications may cause substantial population morbidity, long-term disability, and even death due to the lung fibrosis progression. The incidence of COVID-induced pulmonary fibrosis caused by COVID can be estimated based on a 15-year observational study of lung pathology after SARS. Most SARS patients with fibrotic lung damage recovered within the first year and then remained healthy; however, in 20% of the cases, significant fibrosis progression was found in 5–10 years. Based on these data, the incidence rate of post-COVID lung fibrosis can be estimated at 2–6% after moderate illness. What is worse, there are reasons to believe that fibrosis may become one of the major long-term complications of COVID, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. In this review, we analyze the latest data from ongoing clinical trials aimed at treating post-COVID lung fibrosis and analyze the rationale for the current drug candidates. We discuss the use of antifibrotic therapy for idiopathic pulmonary fibrosis, the IN01 vaccine, glucocorticosteroids as well as the stromal vascular fraction for the treatment and rehabilitation of patients with COVID-associated pulmonary damage.
Respiratory viral infections constitute the most frequent reason for medical consultations in the World. They can be associated with a wide range of clinical manifestations ranging from self-limited upper respiratory tract infections to more devastating conditions such as pneumonia. In particular, in serious cases influenza A leads to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, obesity, young children and the elderly. In the present study, we show a protective effect of the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-yl)ethylamino]-5-oxohexanoic acid) against influenza A (H1N1) virus, human parainfluenza virus and human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus in tissues and tissue morphology were monitored in the experimental groups of animals. The protective action of Ingavirin was observed as a reduction of infectious titer of the virus in the lung tissue, prolongation of the life of the infected animals, normalization of weight dynamics throughout the course of the disease, lowering of mortality of treated animals compared to a placebo control and normalization of tissue structure. In case of influenza virus infection, the protective activity of Ingavirin was similar to that of the reference compound Tamiflu. Based on the results obtained, Ingavirin should be considered as an important part of anti-viral prophylaxis and therapy.
A new quantitative approach to investigate the capability of iron heme complexes (HEM), metmyoglobin and hemin, to catalyze lipid peroxidation was elaborated. The oxidation of methyl linoleate in micellar solutions was used as a testing model. The key point was the determination of the rate of free radical generation, RIN, calculated from the rate of oxygen consumption. The HEM catalytic activity was characterized by two independent parameters: by reactivity and by its resistance to degradation. Both parameters were found to be pH-dependent. The reactivity was expressed as the effective rate constant for the reaction of HEM with lipid hydroperoxide. The resistance to degradation was characterized by the rate of the decrease in RIN with time and also by the regeneration coefficient, which shows how many active free radicals can be generated by one molecule of HEM. Both Hemin and metMB were found to be very effective catalysts even at nanomolar concentrations. The effective regeneration of active forms of HEM was observed. The catalytic activity of HEM was rapidly reduced with time. The kinetic scheme of the process under consideration was suggested, and this was applied for kinetic computer simulations.
Since the beginning of the COVID-19 pandemic, clinical, radiological, and histopathological studies have provided evidence that organizing pneumonia is a possible consequence of the SARS-CoV2 infection. This post-COVID-19 organizing pneumonia (PCOP) causes persisting dyspnea, impaired pulmonary function, and produces radiological abnormalities for at least 5 weeks after onset of symptoms. While most patients with PCOP recover within a year after acute COVID-19, 5–25% of cases need specialized treatment. However, despite substantial resources allocated worldwide to finding a solution to this problem, there are no approved treatments for PCOP. Oral corticosteroids produce a therapeutic response in a majority of such PCOP patients, but their application is limited by the anticipated high-relapse frequency and the risk of severe adverse effects. Herein, we conduct a systematic comparison of the epidemiology, pathogenesis, and clinical presentation of the organizing pneumonias caused by COVID-19 as well as other viral infections. We also use the clinical efficacy of corticosteroids in other postinfection OPs (PIOPs) to predict the therapeutic response in the treatment of PCOP. Finally, we discuss the potential application of a candidate anti-inflammatory and antifibrotic therapy for the treatment of PCOP based on the analysis of the latest clinical trials data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.