We describe the growth of hexagonal GaN on Si(111) by gas source molecular beam epitaxy with ammonia. The initial deposition of Al, at 1130–1190 K, resulted in a very rapid transition to a two-dimensional growth mode of AlN. The rapid transition is essential for the subsequent growth of high quality GaN and AlGaN. This procedure also resulted in complete elimination of cracking in thick (>2 μm) GaN layers. For layers thicker than 1.5 μm, the full width at half maximum of the (0002) GaN diffraction peak was less than 14 arc sec. We show that a short period superlattice of AlGaN/GaN grown on the AlN buffer can be used to block defects propagating through GaN, resulting in good crystal and luminescence quality. At room temperature, the linewidth of the GaN exciton recombination peak was less than 40 meV, typical of the best samples grown on sapphire.
Hexagonal AlN layers were grown on Si(111) by gas-source molecular-beam epitaxy with ammonia. The transition between the (7×7) and (1×1) silicon surface reconstructions, at 1100 K, was used for in situ calibration of the substrate temperature. The initial deposition of Al, at 1130–1190 K, produced an effective nucleation layer for the growth of AlN. The Al layer also reduced islands of SiNx that might be formed due to background NH3 on the silicon surface prior to the onset of epitaxial growth. The transition to two-dimensional growth mode, under optimum conditions, was obtained after the initial AlN thickness of ∼7 nm.
A new type of energy storage devices utilizing multilayer Pb(Zr0.95Ti0.05)0.98Nb0.02O3 films is studied experimentally and numerically. To release the stored energy, the multilayer ferroelectric structures are subjected to adiabatic compression perpendicular to the polarization direction. Obtained results indicate that electrical interference between layers (10–120 layers) during stress wave transit through the structures has an effect on the generated current waveforms, but no impact on the released electric charge. The multilayer films undergo a pressure‐induced phase transition to antiferroelectric phase at 1.7 GPa adiabatic compression and become completely depolarized, releasing surface screening charge with density equal to their remnant polarization. An energy density of 3 J cm−3 is successfully achieved with giant power density on the order of 2 MW cm−3, which is four orders of magnitude higher than that of any other type of energy storage device. The outputs of multilayer structures can be precisely controlled by the parameters of the ferroelectric layer and the number of layers. Multilayer film modules with a volume of 0.7 cm3 are capable of producing 2.4 kA current, not achievable in electrochemical capacitors or batteries, which will greatly enhance the miniaturization and integration requirements for emerging high‐power applications.
Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3–(y)Pb(Mg1/3Nb2/3)O3–(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size and crystallographic orientation of domains made it possible to identify single crystals that release up to three times more electric charge density than that produced by PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5) ferroelectric ceramics under identical loading conditions. The obtained results indicate that PIN-PMN-PT crystals became completely depolarized under 3.9 GPa compression. It was found that the energy density generated in the crystals during depolarization in the high voltage mode is four times higher than that for PZT 52/48 and 95/5. The obtained results promise new single crystal applications in ultrahigh-power transducers that are capable of producing hundreds kilovolt pulses and gigawatt-peak power microwave radiation.
Stress-induced and thermal-induced depolarization studies along with X-ray diffraction were performed on lead zirconate titanate ferroelectrics of different compositions, PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5). Specimens were shock loaded perpendicular to the polarization vector. It was found that the polarity of the stress-induced charge released by PZT 52/48 and 95/5 was opposite to the polarity of the charge generated due to the piezoelectric effect. PZT 52/48 was only partially (45%) depolarized under 1.5 ± 0.1 GPa mechanical compression, as opposed to PZT 95/5 which was fully depolarized. The experimental results indicate that the stress-induced depolarization mechanisms are different for these two compositions. PZT 52/48 is transformed to a state with lower polarization, while PZT 95/5 undergoes a phase transition to a non-polar antiferroelectric phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.