Biomechanics of eye tissues is an important parameter of the state of the ocular system and its study is of undoubted interest since there are several clinical situations in which an in vivo assessment of mechanical properties can help both in diagnosis and in treatment. The risk of developing glaucoma and keratoconus of the eye is associated with pathological changes in the biomechanical properties of such eye tissues as the cornea and sclera. Thus, the problem arises of studying tissue biomechanics and the possibility of influencing it. For this purpose, experiments were carried out to determine the dynamics of elastic properties of intact and modified tissue of the sclera and cornea of the pig's eye by OCT elastography and speckle interferometry. Internal stresses found by numerical simulation from a comparison of subsequent OCT frames demonstrate a dependence on the biomechanics of the tissue sample. It was also shown that the time and temperature dependences of the contrast and correlation functions in speckle interferometry make it possible to track the onset of structural changes in the tissues during repetitively pulsed laser heating. A comparison was made in the behaviour of these curves for the central and peripheral regions of the cornea. The results obtained and their repeatability allow us to conclude that the speckle interferometry can be used as the basis for a system for monitoring structural changes in the cornea associated with the thermal effect of laser radiation. OCT elastography is a sensitive method for studying the biomechanical properties of eye tissues (cornea and sclera) under laser exposure, reflecting the dependence on the intraocular pressure of the eye. This method can be used as the basis for a control system in the development of medical technology for influencing the sclera and cornea of the eye.
In many clinical cases, knowledge of the biomechanical properties of the cornea will allow for early diagnosis and also contribute to the success of treatment. The methods existing in the clinic characterize the biomechanical properties of the cornea as a whole, but do not give an idea of its local properties. One of the promising approaches to measure local changes in biomechanics is optical coherence elastography (OCE) based on phase-sensitive optical coherence tomography (OCT). In this work, the OCE method, based on the registration of small tissue deformations under an applied load, showed that the appearance and propagation of mechanical waves due to laser exposure depend on the loading of the studied biological tissue due to its tension with the application of various intraocular pressures (IOP). An analysis of inter-frame differential OCT images showed that the width of the laser impact zone on the tissue increases with increasing of IOP. An analysis of the strain amplitudes depending on the IOP at a given point revealed a correlation with the IOP value and made it possible to fix the fluidity threshold for the sample under consideration in the given experimental geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.