AbstractPlatelet rich plasma (PRP) represents a relatively new approach in regenerative medicine. It is obtained from patient’s own blood and contains different growth factors and other biomolecules necessary for wound healing. Since there are various protocols for PRP preparing, it usually results with PRP generation with different amounts of bioactive substances, which finally may modulate the intensity of wound healing. The reference data about potential effect of some PRP compounds on wound healing, in different tissues, are still controversial. This review summarizes recently known facts about physiological role of certain PRP components and guidance for further research. Also, this review discusses different procedure for PRP generation and potential effect of leukocytes on wound healing.
The morphological evolution of both pits and SiGe islands on patterned Si͑001͒ substrates is investigated. With increasing Si buffer layer thickness the patterned holes transform into multifaceted pits before evolving into inverted truncated pyramids. SiGe island formation and evolution are studied by systematically varying the Ge coverage and pit spacing and quantitative data on the influence of the pattern periodicity on the SiGe island volume are presented. The presence of pits allows the fabrication of uniform island arrays with any of their equilibrium shapes.
Platelet-rich fibrin (PRF) represents second generation of platelet concentrates, which has gained increasing awareness in recent years for regenerative procedures. This biologic additive is completely autologous, easy to prepare, has minimal expense, and possesses prolonged growth factor release, together with several other advantages over traditionally prepared platelet concentrates. Since its introduction, various protocols for PRF preparation have been proposed with different amounts of growth factors and other biomolecules necessary for wound healing. However, reference data about potential effect of some PRF components on hard and soft tissue healing are still conflicting. The current article intends to clarify the relevant advances about physiological role of certain PRF components and to provide insight into the new developmental approach. Also, this review summarizes the evolution of platelet concentrates and biologic properties of different modifications of PRF procedure.
For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si–metal–oxide semiconductor field-effect transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.