Climate change is affecting all sectors of human activities worldwide, including crop production. The aim of the paper was to evaluate the average daily air temperatures measured at one hundred meteorological stations across Slovakia in 1961–2010 and calculate the maximum length of the vegetation period for Solanum lycopersicum L., Brassica oleracea L. var. capitata and Daucus carota L. Future trends predictions of the temporal and spatial development across the duration of the vegetation period in Slovakia were elaborated for decades 2011–2020, 2041–2050, 2071–2080 and 2091–2100. Our results show that there was an earlier start to the vegetation period in spring and a later termination in autumn for past 30 years. There is a predicted trend of prolongation of the maximum duration of the vegetation period up to 20 days (Solanum lycopersicum L., Brassica oleracea L. var. capitata) and 15 days (Daucus carota L.) in comparison with the refence decade 2001–2010. The maximum vegetation period duration will extend from the south of Slovakia towards the north of the country. The predicted potential increase in crop vegetation periods will be limited by other constraints such as the availability of arable land and soil water availability.
The purpose of the paper was to show cognition from the theory of climate change. The map outputs of these changes offer the climate data from basic elements and characteristics of the energy balance in terms of the current state as well as the trends and assumptions of their future changes in Slovakia. For these agroclimatic analyses, 100 climatic stations in Slovakia spread out to cover all agricultural regions, up to 800 m above sea level, have been selected. Our analyses are related to the period of years 1961-2010, when measurements and observations were the most homogeneous. The future trends and map outputs of future climate change were determined with the mathematic-statistical methods to the 2035, 2050, 2075-and 2100-year horizons. This study presents the impact of the climate change on the temperature conditions in Slovakia. The temperature changes (average, maximum and minimum temperature) were analysed with forecasts up to year 2100. The forecasts for the 2100-year horizon indicate increasing of the average annual temperature on average by about 2.0°C, maximum temperature on average by about 2.0°C and minimum temperature on average by about 2.5-3°C in comparison to the present.
Drought is generally associated with the persistence of low precipitation amount, decreased soil moisture and water availability relative to the normal levels in a designated area. The effects of drought, range from the morphological to molecular levels, and are evident at all phenological stages of the plant growth, at whatever stage the water deficit occurs. Determination of the surface water demands for irrigation purposes comes out from the assumption of hydrologic processes stationarity. This paper shows our research prerequisite that water stress participates in an important part on the volume changes of over ground parts, which is predictive for the irrigation demand. Malus domestica var. Yellow Transparent was chosen for the measurement of volume changes of the surface plant parts. Our measurements were realised by the Diameter dendrometer small (DD-S) from 24.08. to 13.09.2017. One tree was irrigated by the dose of 50 mm. We compared the dendrometric changes to soil moisture and rainfall on both irrigated and non-irrigated trees. The experiment showed the differences between the irrigated apple tree (the diameters of the branches fluctuated between 11.9 and 12.1 mm) and the non-irrigated apple tree (the diameter of the branches increased after three-day rain from 8.35 to 8.61 mm), in order to determine the water stress of plants based on dendrometric changes and optimize irrigation during the drought period.
Drought impacts are significant and widespread on a year-to-year basis, affecting many economic sectors and people at any time. Definitions of drought are clustered into four types: meteorological, hydrologic, agricultural, and socio-economic. In our paper we focus on the comparison of meteorological drought (defined as a period with no precipitation) and agricultural drought (determined as the value below the amount of water storage in the soil profile accessible to plants). The meteorological stations of the Department of Biometeorology and Hydrology of the Slovak University of Agriculture (SUA) in the Nitra River Basin (Slovakia) – Bystričany, Solčany and Palárikovo – were used for the research. Soil moisture was recorded at horizons 0–0.15 m and 0.15–0.30 m. The occurrence of meteorological as well as agricultural drought in the Bystričany locality has changed quite significantly – not only in the summer months but also in the autumn and often in the spring. Meteorological drought in the Solčany locality occurs regularly almost throughout the whole year. Agricultural drought is becoming more regular in the last monitored years. In Palárikovo (the southernmost locality) the occurrence of meteorological drought is regular and even occurs in the spring and autumn months. Agricultural drought also occurs regularly. To increase agricultural production, it is necessary to focus not only on meteorological drought, but also on agricultural drought and soil characteristics in individual localities. We analysed the drought to the depth of 0.30 m, but in the deeper layers there may be enough moisture for the crops´ root systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.