Context As a novel coronavirus swept the world in early 2020, thousands of software developers began working from home. Many did so on short notice, under difficult and stressful conditions. Objective This study investigates the effects of the pandemic on developers’ wellbeing and productivity. Method A questionnaire survey was created mainly from existing, validated scales and translated into 12 languages. The data was analyzed using non-parametric inferential statistics and structural equation modeling. Results The questionnaire received 2225 usable responses from 53 countries. Factor analysis supported the validity of the scales and the structural model achieved a good fit (CFI = 0.961, RMSEA = 0.051, SRMR = 0.067). Confirmatory results include: (1) the pandemic has had a negative effect on developers’ wellbeing and productivity; (2) productivity and wellbeing are closely related; (3) disaster preparedness, fear related to the pandemic and home office ergonomics all affect wellbeing or productivity. Exploratory analysis suggests that: (1) women, parents and people with disabilities may be disproportionately affected; (2) different people need different kinds of support. Conclusions To improve employee productivity, software companies should focus on maximizing employee wellbeing and improving the ergonomics of employees’ home offices. Women, parents and disabled persons may require extra support.
Modern distributed version control systems, such as Git, offer support for branching-the possibility to develop parts of software outside the master trunk. Consideration of the repository structure in Mining Software Repository (MSR) studies requires a thorough approach to mining, but there is no well-documented, widespread methodology regarding the handling of merge commits and branches. Moreover, there is still a lack of knowledge of the extent to which considering branches during MSR studies impacts the results of the studies. In this study, we set out to evaluate the importance of proper handling of branches when calculating file modification histories. We analyze over 1,400 Git repositories of four open source ecosystems and compute modification histories for over two million files, using two different algorithms. One algorithm only follows the first parent of each commit when traversing the repository, the other returns the full modification history of a file across all branches. We show that the two algorithms consistently deliver different results, but the scale of the difference varies across projects and ecosystems. Further, we evaluate the importance of accurate mining of file histories by comparing the performance of common techniques that rely on file modification history-reviewer recommendation, change recommendation, and defect prediction-for two algorithms of file history retrieval. We find that considering full file histories leads to an increase in the techniques' performance that is rather modest. CCS CONCEPTS • Software and its engineering → Software configuration management and version control systems;
One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation-an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner-an open-source library for mining path-based representations of code. Path-Miner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language.
Abstract-Selecting reviewers for code changes is a critical step for an efficient code review process. Recent studies propose automated reviewer recommendation algorithms to support developers in this task. However, the evaluation of recommendation algorithms, when done apart from their target systems and users (i.e., code review tools and change authors), leaves out important aspects: perception of recommendations, influence of recommendations on human choices, and their effect on user experience. This study is the first to evaluate a reviewer recommender in vivo. We compare historical reviewers and recommendations for over 21,000 code reviews performed with a deployed recommender in a company environment and set out to measure the influence of recommendations on users' choices, along with other performance metrics. Having found no evidence of influence, we turn to the users of the recommender. Through interviews and a survey we find that, though perceived as relevant, reviewer recommendations rarely provide additional value for the respondents. We confirm this finding with a larger study at another company. The confirmation of this finding brings up a case for more user-centric approaches to designing and evaluating the recommenders. Finally, we investigate information needs of developers during reviewer selection and discuss promising directions for the next generation of reviewer recommendation tools. Preprint: https://doi.org/10.5281/zenodo.1404814
Authorship attribution (i.e., determining who is the author of a piece of source code) is an established research topic. State-of-theart results for the authorship attribution problem look promising for the software engineering field, where they could be applied to detect plagiarized code and prevent legal issues. With this article, we first introduce a new language-agnostic approach to authorship attribution of source code. Then, we discuss limitations of existing synthetic datasets for authorship attribution, and propose a data collection approach that delivers datasets that better reflect aspects important for potential practical use in software engineering. Finally, we demonstrate that high accuracy of authorship attribution models on existing datasets drastically drops when they are evaluated on more realistic data. We outline next steps for the design and evaluation of authorship attribution models that could bring the research efforts closer to practical use for software engineering. CCS CONCEPTS• Software and its engineering → Software maintenance tools; Software verification and validation; • Security and privacy → Malware and its mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.