This article deals with the enumeration of directed lattice walks on the integers with any finite set of steps, starting at a given altitude j and ending at a given altitude k, with additional constraints such as, for example, to never attain altitude 0 in-between. We first discuss the case of walks on the integers with steps −h, . . . , −1, +1, . . . , +h. The case h = 1 is equivalent to the classical Dyck paths, for which many ways of getting explicit formulas involving Catalan-like numbers are known. The case h = 2 corresponds to "basketball" walks, which we treat in full detail. Then we move on to the more general case of walks with any finite set of steps, also allowing some weights/probabilities associated with each step. We show how a method of wide applicability, the so-called "kernel method", leads to explicit formulas for the number of walks of length n, for any h, in terms of nested sums of binomials. We finally relate some special cases to other combinatorial problems, or to problems arising in queuing theory.
In this paper, we study the problem of developing new combinatorial generation algorithms. The main purpose of our research is to derive and improve general methods for developing combinatorial generation algorithms. We present basic general methods for solving this task and consider one of these methods, which is based on AND/OR trees. This method is extended by using the mathematical apparatus of the theory of generating functions since it is one of the basic approaches in combinatorics (we propose to use the method of compositae for obtaining explicit expression of the coefficients of generating functions). As a result, we also apply this method and develop new ranking and unranking algorithms for the following combinatorial sets: permutations, permutations with ascents, combinations, Dyck paths with return steps, labeled Dyck paths with ascents on return steps. For each of them, we construct an AND/OR tree structure, find a bijection between the elements of the combinatorial set and the set of variants of the AND/OR tree, and develop algorithms for ranking and unranking the variants of the AND/OR tree.
Using notions of composita and composition of generating functions, we establish some explicit formulas for the Generalized Hermite polynomials, the Generalized Humbert polynomials, the Lerch polynomials, and the Mahler polynomials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.