This paper presents results of numerical computations for floating off-shore wind turbines using, as an example, a machine of 10-MW rated power. The aerodynamic loads on the rotor are computed using the Helicopter Multi-Block flow solver developed at the University of Liverpool. The method solves the Navier-Stokes equations in integral form using the arbitrary LagrangianEulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform are computed using the Smooth-ed Particle Hydrodynamics method, which is mesh-free and represents the water and floating structures by a set of discrete elements, referred to as particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the results are presented in this paper. The importance of coupling is assessed and the loosely coupled algorithm used is described in detail alongside the obtained results.
The possibility of a wind turbine entering vortex ring state (VRS) during pitching oscillations is explored in this paper. The work first validated the employed computational fluid dynamics (CFD) method, and continued with computations at fixed yaw of the NREL phase VI wind turbine. The aerodynamic performance of the rotor was computed using the helicopter multiblock (HMB) flow solver. This code solves the Navier–Stokes equations in integral form using the arbitrary Lagrangian–Eulerian formulation for time-dependent domains with moving boundaries. With confidence on the established method, yawing and pitching oscillations were performed suggesting partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.
The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance.Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients to be tuned to match the required application. In this paper, the γ−equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. Different aerofoils are used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solution for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.