The capacity to associate neutral stimuli with affective value is an important survival strategy that can be accomplished by cell assemblies obeying Hebbian learning principles. In the neuroscience laboratory, classical fear conditioning has been extensively used as a model to study learning related changes in neural structure and function. Here, we review the effects of classical fear conditioning on electromagnetic brain activity in humans, focusing on how sensory systems adapt to changing fear-related contingencies. By considering spatio-temporal patterns of mass neuronal activity we illustrate a range of cortical changes related to a retuning of neuronal sensitivity to amplify signals consistent with fear-associated stimuli at the cost of other sensory information. Putative mechanisms that may underlie fear-associated plasticity at the level of the sensory cortices are briefly considered and several avenues for future work are outlined.
We explored changes in multiscale brain signal complexity and power‐law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate‐based tests of nonlinearity we also examined whether any of the sleep stage‐dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time‐scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.
We investigated the development of spontaneous (resting state) cerebral electric fields and their network organization from early to late childhood in a large community sample of children. Critically, we examined electrocortical maturation across one-year windows rather than creating aggregate averages that can miss more subtle maturational trends. We implemented several novel methodological approaches including a more fine grained examination of spectral features across multiple electrodes, the use of phase-lagged functional connectivity to control for the confounding effects of volume conduction and applying topological network analyses to weighted cortical adjacency matrices. Overall, there were major decreases in absolute EEG spectral density (particularly in the slow wave range) across cortical lobes as a function of age. Moreover, the peak of the alpha frequency increased with chronological age and there was a redistribution of relative spectral density towards the higher frequency ranges, consistent with much of the previous literature. There were age differences in long range functional brain connectivity, particularly in the alpha frequency band, culminating in the most dense and spatially variable networks in the oldest children. We discovered age-related reductions in characteristic path lengths, modularity and homogeneity of alpha-band cortical networks from early to late childhood. In summary, there is evidence of large scale reorganization in endogenous brain electric fields from early to late childhood, suggesting reduced signal amplitudes in the presence of more functionally integrated and band limited coordination of neuronal activity across the cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.