The charge recombination dynamics of excited donor-acceptor complexes consisting of hexamethylbenzene (HMB), pentamethylbenzene (PMB), and isodurene (IDU) as electron donors and tetracyanoethylene (TCNE) as electron acceptor in various polar solvents has been investigated within the framework of the stochastic approach. The model accounts for the reorganization of intramolecular high-frequency vibrational modes as well as for the solvent reorganization. All electron-transfer energetic parameters have been determined from the resonance Raman data and from the analysis of the stationary charge transfer absorption band, while the electronic coupling has been obtained from the fit to the charge recombination dynamics in one solvent. It appears that nearly 100% of the initially excited donor-acceptor complexes recombine in a nonthermal (hot) stage when the nonequilibrium wave packet passes through a number of term crossings corresponding to transitions toward vibrational excited states of the electronic ground state. Once all parameters of the model have been obtained, the influence of the dynamic solvent properties (solvent effect) and of the carrier frequency of the excitation pulse (spectral effect) on the charge recombination dynamics have been explored. The main conclusions are (i) the model provides a globally satisfactory description for the IDU/TCNE complex although it noticeably overestimates the spectral effect, (ii) the solvent effect is quantitatively well described for the PMB/TCNE and HMB/TCNE complexes but the model fails to reproduce their spectral effects, and (iii) the positive spectral effect observed with the HMB/TCNE complex cannot be described within the framework of two-level models and the charge redistribution in the excited complexes should most probably be taken into account.
The charge recombination (CR) dynamics of geminate ion pairs formed by excitation of the ground-state donor-acceptor complexes in polar solvent have been investigated within the framework of stochastic approach. It is shown that for low exergonic reactions these dynamics critically depend on the reorganization energy of intramolecular high-frequency mode. Even moderate reorganization energies (0.1-0.2 eV) significantly accelerate the excited-state population decay making it nearly exponential. In the solvent-controlled regime, the majority of the excited donor-acceptor complexes recombine at nonthermal (hot) stage when the nonequilibrium initial wave packet passes through a number of term crossings corresponding to the transitions with creation of several vibrational quanta. Analysis of this mechanism allows to conclude (i) the CR in viscous solvents proceeds much faster than the diffusive relaxation of solvent, (ii) under certain conditions, the CR rate becomes practically independent of the diffusive component of solvent relaxation which is determined by solvent viscosity, (iii) in contrast to predictions of Marcus theory, the CR rate decreases monotonically with the rise of reaction exergonicity even at small free energy gaps, in accordance with experimental results. Two semiquantitative approaches providing rather simple analytical expressions for the hot charge recombination dynamics are suggested. These approximations give a good reproduction of the excited-state decay in the wide area of model parameters.
A model of the intramolecular charge separation from the second singlet excited-state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited-state has been constructed and investigated. The model incorporates three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Dynamics of the transitions between these states are described in the framework of the stochastic point-transition approach. The relaxation of the intramolecular high frequency vibrational mode is supposed to occur as a single-quantum transition between nearest states with a time constant depending on the number of the vibrational state. The medium relaxation is characterized by two timescales. A good fitting to experimentally observed population dynamics of both the first and the second singlet excited states has been obtained. The calculations show the charge recombination into the first excited-state to proceed in a hot stage in parallel with the relaxation of both the medium and the intramolecular high-frequency vibrational mode.
Intramolecular charge separation from the second singlet excited state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J.-R.; Odobel, F.; Hammarström, L. J. Phys. Chem. A 2010, 114, 1709]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.