Abstract. An important task for the problem of coronal heating is to produce reliable evaluation of the statistical properties of energy release and eruptive events such as microand nanoflares in the solar corona. Different types of distributions for the peak flux, peak count rate measurements, pixel intensities, total energy flux or emission measures increases or waiting times have appeared in the literature. This raises the question of a precise evaluation and classification of such distributions. For this purpose, we use the method proposed by K. Pearson at the beginning of the last century, based on the relationship between the first 4 moments of the distribution. Pearson's technique encompasses and classifies a broad range of distributions, including some of those which have appeared in the literature about coronal heating. This technique is successfully applied to simulated data from the model of Krasnoselskikh et al. (2002). It allows to provide successful fits to the empirical distributions of the dissipated energy, and to classify them as a function of model parameters such as dissipation mechanisms and threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.