The global energy demand for digital activities is constantly growing. Computing nodes and cloud services are at the heart of these activities. Understanding their energy consumption is an important step towards reducing it. On one hand, physical power meters are very accurate in measuring energy but they are expensive, difficult to deploy on a large scale, and are not able to provide measurements at the service level. On the other hand, power models and vendor-specific internal interfaces are already available or can be implemented on existing systems. Plenty of tools, called software-based power meters, have been developed around the concepts of power models and internal interfaces, in order to report the power consumption at levels ranging from the whole computing node to applications and services. However, we have found that it can be difficult to choose the right tool for a specific need. In this work, we qualitatively and experimentally compare several software-based power meters able to deal with CPU or GPU-based infrastructures. For this purpose, we evaluate them against high-precision physical power meters while executing various intensive workloads. We extend this empirical study to highlight the strengths and limitations of each software-based power meter.
Data centers are very energy-intensive facilities that can generate various environmental impacts. Numerous energy, power, and environmental leverages exist and can help cloud providers and data center managers to reduce some of these impacts. But dealing with such heterogeneous leverages can be a challenging task that requires some support from a dedicated framework. This article presents a new approach for modeling, evaluating, and orchestrating a large set of technological and logistical leverages. Our framework is based on leverages modeling and Gantt chart leverages mapping. First experimental results based on selected scenarios show the pertinence of the proposed approach in terms of management facilities and potential impacts reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.