Carbon nanotubes have shown promise as contrast agents for photoacoustic and photothermal imaging of tumours and infections because they offer high resolution and allow deep tissue imaging. However, in vivo applications have been limited by the relatively low absorption displayed by nanotubes at near-infrared wavelengths and concerns over toxicity. Here, we show that gold-plated carbon nanotubes—termed golden carbon nanotubes—can be used as photoacoustic and photothermal contrast agents with enhanced near-infrared contrast (~102-fold) for targeting lymphatic vessels in mice using extremely low laser fluence levels of a few mJ cm−2. Antibody-conjugated golden carbon nanotubes were used to map the lymphatic endothelial receptor, and preliminary in vitro viability tests show golden carbon nanotubes have minimal toxicity. This new nanomaterial could be an effective alternative to existing nanoparticles and fluorescent labels for non-invasive targeted imaging of molecular structures in vivo.
The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths1,2. Detecting circulating tumour cells—a common marker for the development of metastasis3,4—is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed5–7. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420-570 nm, 12 ns, 0.1-5 J/cm(2), 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.
Understanding the nature of interactions between engineered nanomaterials and plants is crucial in comprehending the impact of nanotechnology on the environment and agriculture with a focus on toxicity concerns, plant disease treatment, and genetic engineering. To date, little progress has been made in studying nanoparticle-plant interactions at single nanoparticle and genetic levels. Here, we introduce an advanced platform integrating genetic, Raman, photothermal, and photoacoustic methods. Using this approach, we discovered that multiwall carbon nanotubes induce previously unknown changes in gene expression in tomato leaves and roots, particularly, up-regulation of the stress-related genes, including those induced by pathogens and the water-channel LeAqp2 gene. A nano-bubble amplified photothermal/photoacoustic imaging, spectroscopy, and burning technique demonstrated the detection of multiwall carbon nanotubes in roots, leaves, and fruits down to the single nanoparticle and cell level. Thus, our integrated platform allows the study of nanoparticles' impact on plants with higher sensitivity and specificity, compared to existing assays. (2) is one of the most intensely studied areas in nanotechnology. Nanoscale materials have been shown to be uptaken by tumor cells (3), bacteria (4), plant cells (5), and animal tissues (6). In particular, carbon nanotubes (CNTs) with their unique structural and dimensional properties have been intensively studied for drug and gene delivery, tissue engineering, and other biomedical applications (7-9). It has also been shown that carbon nanotubes have the ability to penetrate plant cells (5) and induce phytotoxicity at high doses (10). We have demonstrated that single-wall CNTs at relatively low doses can penetrate even thick seed coats, stimulate germination, and activate enhanced growth of tomato plants (11). However, a thorough understanding of the effects induced by the nano-sized engineered materials on plant physiology at the molecular level is still lacking. In addition, the methods used for detecting such nanostructures in plant tissues are not well established and most of them are time consuming and labor intensive. Moreover, existing nanoparticle detection techniques usually decompose and destroy samples to prove the presence of nanomaterials; as a result, the same plant samples cannot be assessed for genomic/proteomic analysis. For example, the detection of magnetic nanoparticles in pumpkin plants by vibrating sample magnetometer requires drying and digestion of tissue samples with HNO 3 (12). Transmission electron microscopy (TEM) has been used to monitor the uptake and transportation of CNTs in rice (13), but it has few quantitative capabilities and may result in false positive interpretation because of considerable similarity in TEM images of CNTs and natural plant structures. Consequently, the analysis has to be combined with spectroscopic studies for the exact identification and assessment of the CNTs in the host plant tissue, and this requires the total destruct...
The circulating tumor cell (CTC) count has been shown as a prognostic marker for metastasis development. However, its clinical utility for metastasis prevention remains unclear, because metastases may already be present at the time of initial diagnosis with existing assays. Their sensitivity ex vivo is limited by a small blood sample volume, whereas in vivo examination of larger blood volumes may be clinically restricted by the toxicity of labels used for targeting of CTCs. We introduce a method for in vivo photoacoustic blood cancer testing with a high-pulse-repetition-rate diode laser that, when applied to melanoma, is free of this limitation. It uses the overexpression of melanin clusters as intrinsic, spectrallyspecific cancer markers and signal amplifiers, thus providing higher photoacoustic contrast of melanoma cells compared with a blood background. In tumor-bearing mouse models and melanoma-spiked human blood samples, we showed a sensitivity level of 1 CTC/mL with the potential to improve this sensitivity 10 3 -fold in humans in vivo, which is impossible with existing assays. Additional advances of this platform include decreased background signals from blood through changes in its oxygenation, osmolarity, and hematocrit within physiologic norms, assessment of CTCs in deep vessels, in vivo CTC enrichment, and photoacoustic-guided photothermal ablation of CTCs in the bloodstream. These advances make feasible the early diagnosis of melanoma during the initial parallel progression of primary tumor and CTCs, and laser blood purging using noninvasive or hemodialysis-like schematics for the prevention of metastasis. [Cancer Res 2009;69(20):7926-34]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.