Using a combination of the quartz crystal microbalance and surface plasmon resonance techniques, we have studied the spontaneous formation of supported lipid bilayers from small (approximately 25 nm) unilamellar vesicles. Together these experimental methods measure the amount of lipid adsorbed on the surface and the amount of water trapped by the lipid. With this approach, we have, for the first time, been able to observe in detail the progression from the adsorption of intact vesicles to rupture and bilayer formation. Monte Carlo simulations reproduce the data.
Using quartz crystal microbalance with dissipation and ellipsometry, we show that during adsorption of fibrinogen on evaporated tantalum films the saturation uptake increases with increasing root-mean-square roughness (from 2.0 to 32.9 nm) beyond the accompanying increase in surface area. This increase is attributed to a change in the geometrical arrangement of the fibrinogen molecules on the surface. For comparison, the adsorption of a nearly globular protein, bovine serum albumin, was studied as well. In this case, the adsorption was less influenced by the roughness. Simple Monte Carlo simulations taking into account surface roughness and the anisotropic shape of fibrinogen reproduce the experimentally observed trend.
Hydrogen-air mixtures are highly flammable. Hydrogen sensors are therefore of paramount importance for timely leak detection during handling. However, existing solutions do not meet the stringent performance targets set by stakeholders, while deactivation due to poisoning, for example by carbon monoxide, is a widely unsolved problem. Here we present a plasmonic metal-polymer hybrid nanomaterial concept, where the polymer coating reduces the apparent activation energy for hydrogen transport into and out of the plasmonic nanoparticles, while deactivation resistance is provided via a tailored tandem polymer membrane. In concert with an optimized volume-to-surface ratio of the signal transducer uniquely offered by nanoparticles, this enables subsecond sensor response times. Simultaneously, hydrogen sorption hysteresis is suppressed, sensor limit of detection is enhanced, and sensor operation in demanding chemical environments is enabled, without signs of long-term deactivation. In a wider perspective, our work suggests strategies for next-generation optical gas sensors with functionalities optimized by hybrid material engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.